A BIO-MIMICKING APPROCH TO REAL-TIME EDGE-DETECTION AND ITS APPLICATION IN MEDICAL IMAGES

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SCIENCE) OF JADAVPUR UNIVERSITY

KUNTAL GHOSH

MICROELECTRONICS DIVISION SAHA INSTITUTE OF NUCLEAR PHYSICS 1/AF BIDHANNAGAR, KOLKATA-700064, INDIA SEPTEMBER, 2006

Contents

1. Introduction	1
2. Fundamental Ideas	11
2.1 Some Preliminary Ideas in Image Processing	11
2.2 A Brief Overview of Human Retina	15
2.3 Receptive Field and Edge Detection	17
3. A New Methodology of Image Enhancement	23
3.1 The Mach Band Illusion in Retrospect	23
3.2 Edge Enhancement by the New Digital Operator	27
4. Low-level Vision and Image Processing	32
4.1 The Non-classical Receptive Field	32
4.2 The Low Level Brightness-Contrast Illusions	35
4.2.1 The Mach Band Illusion	35
4.2.2 The Simultaneous Brightness-contrast Illusion	36
4.2.3 The Grating Induction Illusion	37
4.2.4 The Hermann Grid Illusion	37
4.2.5 The White Effect Illusion	38
4.3 Explanation by ECRF model	39
4.4 The Gestalt Approach and its Limitations	46
4.5 Image Processing with the ECRF Model	50
5. Edge Detection and Non-classical Receptive Field	54
6. A Theory of "Fuzzy" Edge Detection	67

6.1 Extension of the Model	67
6.2 Some Useful Properties of the Proposed Model	71
7. Edge Detection in Noisy Images	85
8. Early Vision and Blind Spot	98
8.1 The Proposed Model for Blind Spot	101
8.1.1 Designing the Proposed Interpolator	103
8.2 Performance of the Proposed Interpolator	105
9. Application of the Proposed Methods in	109
Medical Images	
9.1 Edge Enhancement of Medical Images	109
9.2 Interpolation in Medical Image Processing	111
10. Schemes for Real-time Analog and Digital	121
Implementation of Our Proposed Filter	
10.1 The First Silicon Vision Model	121
10.2 Role of Outer Plexiform Layer in	122
Information Processing	
10.3 Role of Inner Plexiform Layer in	125
Information Processing	
10.4 The Proposed Hardware Implementation in	127
Analog Domain	
10.5 Real-time Implementation of Proposed Filter in	137
Medical Ultrasonography with TI DM642 DSP	
11. Conclusion	140

XV

11.1 Future Directions	142
Glossary	144
Bibliography	148
Appendix	

xvi

Index