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SuMMARY

A connected discussion of the equations for the vertical
propagation of e.m. waves in the ionosphere is given in
standardised notation. It is shown that the electric field
vector components E, and E, are coupled by polarisation

terms, py, p, which are functions of G. M. latitude and

height; and the propagation vectors, ¥V and W, equal
respectively to (E,+ipE,)/\/1+p?, for two values of p,
are governed by two refractive indices ¢, ¢,, and a coupling
term ¢; Vand W may be identified with o- and e- waves
respectively. The five quantities needed to define wave
propagation completely are p,, p,, ¢, ¢o and g,; we have
given a detailed discussion of the first three, and have
omitted discussions about ¢, and ¢, which are identical
with those given by Appleton and have been discussed in
detail by Booker (1935) and others. It is shown that the
coupling term ¢ can be neglected everywhere for F-layer
propagation except very near the G.M. poles, while the
E-layer propagation is more difficult to handle.

>

INTRODUCTION

Wave equations for the propagation of e.m. waves
in the ionosphere had been given by Hartree (1929),
Epstein (1930), Forsterling (1931), Saha and Rai (1937),
Rawer (1939), and Rydbeck (1940) and more recently by
B. K. Banerjea (1947). Most of the older investigations
were confined to the particular case of vertical propagation

in the magnetic equator or poles. In recent years vertical -

propagation in any latitude has been tackled by Rydbeck
(1941) and by Saha, Banerjea, Guha (1947), but a full
discussion of the equations is still wanting. We discuss
here the exact equations from a standpoint which is likely
to throw light on the nature of modification of wave pro-
pagation at high geomagnetic latitudes.

§1. Depuction oF EQuaTions oF WAVE ProPAGATION

The deduction of the equations of propagation of e.m.
waves in the ionosphere follows from ‘the usual ‘method

of em. theory of light. We start with the Maxwell’s
equations:
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(1.1)
V.D=0; V.H=0; D=E{P=K.E.

It will be presently shown that the dielectric constantKis a
tensor quantity. Here P is the polarisation vector due to
the displacement of electrons by the electric field of the

« wave as modified by the presence of the earth’s magnetic
field. If S denotes the displacement of the electron under
these conditions, we have

(1.2)

P=4mw/NeS -
The displacement 8 is given by the Lorentz equation
&S  dS e ds e
i +VE+”~W[H>< E] —ZE.. .. (13

Replacing S by P and since E, Sco ¢#* we can easily fiad out
the solution of (1.3) in the form

P=A.AE, (1.24)
where A=r/B(82— w?) and A is a tensor quantity given by
the matrix

w; —p? wyw,tifw, w,w,—ifw,
A=<wmw”—iﬁwz w; —p? wzwv—{—iﬁwm) (1-4)
wyw,+ifw, w,w,—tfw, o —f

Here B=1—iv/p where v=collision-frequency, r=p,*p*
where p,2=4nNet/m, N being the number of particles per
c.c., w=p,[p where p,=circular gyromagnetic frequency=
eHme, w,, w,, w, are components of w.

From (1.1}, (1.2) and (1.4) we can write the complex
dielectric tensor in the fofrm

1—A(f—wl)  Alw,w,+ifw,) Alww,—iBw,)
K=<A(wzwv—iﬁwz) 1—A(f2—w3) A(w,wy+iﬁwx>>
A(w,w,+ifd,) A(w,w,—ifw,) 1—A(f—w})
f (1.4a)

s
s
.
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So far the treatment has been quite geheral. Let us now

consider the propagation of a plane wave along the vettical

directions (axis of z) and the axis of » is chosen to be

perpendicular to the magnétic merldlan Then putting
w,=0, K comes out as g

—A(f2— wi) Aifw, Awyw,
K—(—Aiﬁw, 1482 Aifo, > (1-4b)
Awyw, —4ifw, 1—A4(f2—wj)

Introducing the condition V.D=0, i.e. E,+P,=0 we get
from (1-4b)
E,=—=7 Twz (—w,E, +igE,)

(1:5)
where

C'=p(p—w®) —1(f*~w?)
Taking the curl of both sides of the second equation in
(1.1) and puttinga% =ip we get the wave equation for the

electric vector in the form
1,2
v X v X E— -‘:—2'D=

Breaking up this equation into components and putting

)
ox

e+ L D=2 £p o (17

From (1.6) and (1.7) we get after some simplification the
following expressions for the Maxwell Displacement Vector

D,=K,E,—ilLE, D,=K,E,+iLE,

1{1=1_rﬁz-_’£ﬂ, K2=1_f(/3_2(;:f_f3) (1-8)

L=1(r—B) w,/C’
Introducing the symbol u=2zp[c, we get the equations of
propagation of the electric vector as

d;—; + K, E,—iLE,=0; d—u; VEE,4LE,=0  (1-9)
Equations in these forms do not help us much in the under-
standing of the phenomenon unless the coupling term L
vanishes, or K;=K,. We have L=0 when w,=0, i.e. at the
magnetic equator (quasi-transverse case).

K;=K, when w,=0; this holds only for the magnetic
poles (quasi-longitudinal case). These special cases are
given in equations (1-17), (1-16).

For any latitude we try the following procedure. Multiply
both sides of the second equation in (1-9) by some indeter-
minate quantity ip and add the product to the first equation.
Re-arranging the terms we get

d? . . .
3 (BatioE,) + (Ky—pL) E, -+ (Ky—Lip)ipE, —2i

dpdE, dsz -0

du du a’u2 (1'10?

(1-6) .

Since we are free to choose p, it is advantageous to do
it in such a way that the coefficients of E, and ipE, are
equal, i.e. we put

Ky—pL=K,—Ljp=g* (L.11)
p is therefore given by the roots of the equation
pi—(Ey—K3)p|L—1=0 (1.12)
Now introducing the symbol
G=(K,—K)[2L— 522" (1.13)

20,(r—p)

the two roots of equation (1:11), which can be denoted
by p, and p,, can be written as:

P1=G—\/1 +G?; Pz=G+\/l +G*
Now it can be easily shown that
C'=(B—r) (B+py0,) (B+pew;)-

With the aid of this relation, it is easy to prove from (1.11)
that ¢% has two values ¢2 and ¢? given by

(1.14)

T L A Y N S
=1 ey @ B+paw, (1.14a)
It is easy to see that these expressions are equivalent to
Appleton expressions (for complex refractive index)Z.
(Vide the expression given by him in the Report on the
Progress of Physics, Vol. 2, 1936.)
We may now turn to the equations (1.10). If dp/du and
d?p/du® can be neglected, we have the following equations
of propagation for the two waves

d? . .
O-wave: ) (ExtipiEy) + 42 (Ep+ip E,) =0
2 (1.15)
Xeowave: T (B, 4ipE)+ g} (BurtipsFyy =0

The terms we have neglected are

—oi.% By _Ppp

du du du2

Now we have

== (G:F\/ﬁﬁf ~__ ~_.

and can be neglected only when ‘%V =0 or small. Equations ,

(1.15) therefore hold when we can neglect dV/dz and &)V
dz?, i.e. for a medium for which /¥ varies very slowly.

The equations (1.15) take simplified forms at the geo- §
magnetxc equator and the poles. For the GM-equator we
have, since G= o0,

2

pr=G—4/TFG2=0, w,ps=2Gw,= rwﬁ
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Hence we have

r r

@=1— B ge=1—

w?

B—r

and the equations (1.15) have the form

&2E,
(O-wave): v (1 — ?;) E,=0 l

2E . r (1.16)
(X-wave): a’u; (I ﬁi— ﬁwjr)E,,:OJ

For the poles, we have G=0, p,=1,p;=—1, and w,=—o
at the north pole, and=w at the south pole. Hence we
have the equations

a2 . r N
(O-wave): =, (Ex—iE,)+ ( 1-3 iw) (E,—iE,) =0
(X-wave): L (E +iE)—|—( 1— ) (E,+iE,)=0

i At v BT w z v

(1.17)

The upper sign refers to the N-magnetic pole, the lower
to the S-magnetic pole.

More rigorous equations of propagation €¢an be deduced
by rotating the axes through a complék angle ¢. We start

from (1.9) and put
(i) = (g “aed) () =5 ()

where § denotes the matrix given above. The inverse
matrix

1 cos¢ sinqS) ( V) = (Ez)
S (—sin $ cosd and we have W S iE,

. . . . dE,
Then it can be easily shown that if by E, we denote Tum’

etc. ,
Ez V, ‘E‘m V”
. =S P =S
iE, W'/, \iE, w”
where
- dV . d*V
V= W, V= W’ etc;
V'=V—¢W, W=W+4V;
av’

V= — W =V-2W—gW—dtv;
W= d—;’;’ GV =W+ 24V +4V—§W.

It is easy to see that V', W’ are the moving co-ordinate
derivatives of ¥V and W. Hence the fundamental equations
(1.9) can be written as

(V" +K,V—LW)cos g— (W’ +K,W+LV)sin $=0, (1.18)
(V" + KV +LW)sin g—(W" +K,W—LV)cos $=0.

From these equations, it is easy to deduce the following
equations:

V" +{K cos’p+ K,sin2p —2Lsing.cosd} V
—{(Ky—FK;)sing.cosd + L(cos?p —sin?p)} W=0 (1.19a)
W" +{Ksin%p+ K,cos®p +2Lsingcosd} W
—{(Ky—K,)sing.cos¢+ L(cos?p—sin2)} V=0 (1.195)
We observe that the coefficient of cross-terms, i.e. of W

in (1.192) and of V in (1:19) have the same value. This
may be made to vanish by appropriate choice of ¢,

i.e. putting (K} —K,)/2L=G= —cot 2¢ (1-20)
If we put tan ¢=r7, the above equation is equivalent to
72—27G—1=0, or r=tan $=G+4/1+Gt=p,, p,.

As before, we denote by p, the quantity G—4/1+G=
Then the other value of

T=— ':—=P2=G+ VITGE
1
It can be easily shown that the coefficients of V and W
in (1.192) and (1.198) viz.,
K1008295+K25in2¢ —2L sin¢.c05¢=qg
K sin?$ -+ Kycos®p+-2L sing.cosp=¢?

We have therefore the final equations:

V'+qV=0; W"'+¢W=0
Now
. . Ez_l'iPlE'll
V=E,cos ¢-+iE, sin ¢= ——=
208 ¢+l sin g = "FES
. . Em+ip2E1l
W=—E,.sin ¢ +iE, cos p= ———= 1.21
$HiE cosgp= T (12D
Hence the equations written in full are:—
(O-wave) %2;!2{ +(q2 —952) V=2¢;W+$W
(1.22)

(X-wave) %—2—/ +(g2 — ) W=—24V—¢V

If the coupling term = ;1%4 tan—lp= dp/du can be put

=g
equal to zero, then equations (1.22) reduce to the equa-
tions (1.15). The coupling term is discussed in detail in
the next section.

The advisability of rotating the axes through an angle
é is easily suggested from analogy of the present case to
that of crystal optics. We write the equation (1.7) in the
form i

d’E

du?

+D=0

1 This type of equa(ions was given by Rydbeck in 1950, but the signs
of the right hand sid¢ of the two equations were given as same. This is
clearly a mistake, the signs ought to be opposite.
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where the vector E has E, and {E, as tfxe components and
the vector D is given by

(i) = (5 &7).(5)

Since the tensor connecting D and E is a symmetrical
tensor we write the equation of the tensor-ellipsoid as

D.E=K,E? —2LE,iE,+K,(iE,)*

from which we find out the principal axes, by the customary
method of removing the cross term. We put

E,=Vcos¢—Wsin g, iE,=Vsin¢-+W cos .

This is equivalent to our transformation.
identical.

The rest is

The tensor-ellipsoid now takes the form
D.E=¢; V2@ W=f.

¢ is the angle between the major axis of the ellipse and the
magnetic meridian.

If Fr =0 it retains a constant value. (See discussion in the

next section.) We observe from (1-22) that the two modes
of propagation are characterised by the phase velocities
¢/¢os ¢/g, and their respective polarisations are given by
ip; and ip, (vide infra.)

It is not easy to deduce simple equations for the magnetic
vectors. They are of the fourth degree. But some simplified
relations can be deduced from the fundamental Maxwell

equations. From the relation (1.1) we have
dH, .dH, .
dll +l 1 —d; —KIE‘E—LJEV

or expressing E, and :E, in terms of ¥ and W, we have

(Hx) Ksing—Lcosp  K,cosp+Lsing\ / V
\iHt,) \Kjcosp—Lsing —K,sinp—Lcosg) \ W
or

V=(H, sing +iH, cos $)/9: =E, cosp +iE, sing 1.93
W==(H, cosp+iH, sing) [q} = —E,sing +iE, cos¢} (123)
From these expressions, which are exact, it is not possible
to deduce any simple relation between the magnetic and

electric vectors at any point. Only at the ground (r=0)
where

¢/ =¢. =1, we have E,=iH,, iE,~H, (1.24)
but these relations are not applicable for any other point.
§2. PorarisaTiON AND CouPpLING.

Expressions (1-22) represent the most rigorous equations
for vertical propagation of e.m. waves in the ionosphere.
The electric vectors E,, E, are coupled by the quantities

p1 and p, forming two new vectors ¥ and W given by (1. 21)
and equations for ¥ and W are coupled by the factor ¢.
As shown earlier ¥ may be identified with the electric
vector for the o-mode of propagation, with the corres-
ponding quantity W for the e-mode.

The general form of solution of (1.22) can be written in
the forms:

V=(EytipsE,) [V THpE . fy(2)
and  W=(E,+ip.E,) [V T+pi ~e?. fi(z) )
or since p, and p, are both functions of z, we can write:
Eytip Ey~e? . fy(2), E,+ipE,~et' . dy(2)

where both iy and ¢y are complex functions of the real
variable z.

(.1)

Let us now put

ip;=Ré* and consequently ip,=R-1¢-i% (2.12)

Therefore we have .
E,.c?+ RE, 0+ =y (7)
E,cos pt+R.E,cos (pt—«) =Re| ,(2) I=Av} (2.2)
Esin pt4-REsin (pt—«)=Im| ,(2) | =By

where 4 and B are finctions of z.

Hence we have for the V-wave:

Cy
El = ms“‘ (pt—o+m—0y), E) = Rsin .csm(pt—ov)

. (2.3)
Cy= '\/Ag + B3,

where fy=tan-! (BV/AV)

‘Similarly for the W-wave, we get

W__ Cw

X

Cw
smﬂcsm(pt «—0y), EY=

1n(pt-l—7r——0w)
where
Cw=A/4Al+BlW, Ow=tan—'(By|dy) . (2.4)

The phase-angle « and the amplitude ratio R are in general
functions of 8, w, r and 6, and we discuss presently how to
obtain analytical expressions for R and «.

Moagnetic Damping Factor: We denote the magnetic
condition of the locality by the angle of propagation 6,
which is the angle between the upward vertical direction
and the positive direction of the magnetic lines of force.
Therefore

w,=—|wlcosd, w,=—|wlsinf (2.5)
because w = ﬂ, and e=—]¢| for electrons; -
i mcp .
2 — 'ph l 2
put ve=pwif2w,=— T cos T sin? 4. (2.6)

v, is positive in the N.H. and negative in S.H. |»,| varies
from 0 at the poles toco at the equator, and its value for a
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number of stations in the N.H. is shown in row 6 of Table
ITI. Let us denote »./p by 8, which may be termed the
magnetic damping ratio. Then introducing the quantities
_£ and 7 defined by

) 1—r d
R S =

. — 80 . 1 — N : §
we have G= Py S (n2+i§+”1}2+§2) (2.8)

We shall now show that it is convenient to represent R, «and
other quantities on a ¢, n-plane. Let us first discuss the
possible range of values of £ and 7.

THE £, 7-PLANE

We have ¢=v/v,; hence ¢ is positive in the N.H., and
negative in the S.H. | £| varies from co at the poles to 0
at the G.M.E. Large values of ¢ denote large damping,
small values small damping. {¢=0 indicates no damping.

As | 8, varies from 0 at the pole to oo at the G.M.E.,
the particular values of ¢ which refer to E or F-regions at
any locality will have to be found for every locality
separately.

l—r 2> .
Let us now trace the values 5= = In the N.H., since
c

8, is positive, we have on the ground r=0, 5=1/§,. This
is the maximum value of 5 below r=1. As we take higher

S . 4w Ne? .
points in the ionosphere, r= e becomes appreciable,

the value of 7 decreases and it becomes zero at r=I,
after which for r>1, 9 is negative. Therefore the line
r=1, which corresponds to =0, divides the {zn-plane in
two parts.

Let us now try to find out general analytical expressions
for R and « at any height, i.e. for any value of r and 3,
as functions of £ and . We proceed from the expressions

Réx=ip, =iG{l —/1+1]G% 29)
Rt —ipy=iG{l +4/TT1/G% '
Now using (2:6) and (2.7), we have
(R+RY) cos «+i(R—R™1) sin «=2iG
from which we deduce the two relatinns
- 2¢ o 2
(R-+R) cos <=, (R—R) sin «<=—772—4’_7£-2 (2.10)
From (2.9), we deduce the important relation
_ 1 \/ 2 1
cos 2«,——X§— 1+ ﬁc"’ﬂy‘*‘)ﬁ (2.11)

AB=g2 {2
The sign before the radical is £1. We have retained

only the negative sign after comparison with the limiting
50

where

case of a friction-free atmosphere. The following expressions
for R can be easily verified

- £ tan «—q
£ tan <+

_1f¢& . n
R= A2 {cos « sin ec}
R 1{ § n

T X \|cos« ' sin -c}

(2.12)

There are some inherent ambiguities in these expressions
for R and « which must be removed. This can be done if
we follow the course of the complex quantities p; and p,
in the complex plane and always confine ourselves to one
particular branch in discussing the nature of py, p,.

For this purpose we start with expressions (2.9).
Now

1 .
I+ ={1—£49%—2ify (2.13)
when r=0, Im {l—l- al—é} =~—2¢n and it is definitely nega-
tive. Hence, if we plot 1+ -(!;-2 in the complex plane, the
point representing it must be in the third or the fourth
quadrant. Therefore, the point (1 + Glz) ¥ vhich is double-

valued, must have one of its values in the fourth quadrant,
and therefore, the other will be in the second quadrant.

We now choose (1 + Cl—2> %to be given by the point in the
fourth quadrant for r=0.

Now let r increase; when r=1, Im {1 +al—:.,‘} =0 and as
(2.11) shows

Re {1+$} >0 if £<1, and<0 if£> 1.
1V, .
Hence, at r=0, and for ¢{<1, (1+52) is either real

positive or real negative. But the last alternative is ruled

out as we have {1 + 51-2} %in the fourth quadrant. Hence
(1—[—2;,1—2) i is real positive for r=1, £<1. Similarly for
£<l, (l-l—é) 1 is negati}{e imaginary. For r>1, and
£<1, In {1+~¢1—z} is>0, and (1+ gi)His in the fim

quadrant, while for £> 1, ( 1+ clz) ¥55 in the third quad-

rant, i.e., the real faart is negative.
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and r> 1. In this case Re {1 + é} B is negative.

Now from (2.9), we have

lpy ] R (1-2/1 cos B-I—Az) 3
1 pa | 1424 cos B+-A?

where 4 cos B=Re {1 + @]-2} 1
Hence, in general R21, except for the quadrant £> 1,
#> 1, in which case, since Re {1 + Gi‘a’} ¥ oo, 1.

Putting tan y=t, we have from (2.10)

S -—..l 22 ._}3._.
O = TR B
. 1 2 R

SN = —

: TR =R

Let us take N.H. Since ¢ is positive, we have cos «> 0

and sin «>0 for r<1; and for r>1 and 5<1, sin « is
negative; for r>1 and £> 1, sin «> 0.

For ready reference we have given in Table I the signs
and ranges of R and « for the different regions in the
£n-plane.

Before taking the general case, let us consider how R

-and « vary along the central line y=0. We have now G—=
—i[¢, hence, we have

Reix = % {1 —\/I——gz}

3

. 1 /1 \3}

Now if ¢<l,a=0, R=— — (= —1
G0 L,

but if §>1,Re"°¢=~§-{l:|:i (1—35) }

Hence R cos «=1[¢, R sin «=4(1—1/¢2)}

R=1, cos «=1J¢.

This shows that the line £=1, divides the £n-plane in
two regions. On the left-hand side, we have «=0 all along
the abscissa, up to ¢=1; on the right-hand side «=cos-1 J€
and, therefore, varies from 0 at ¢= 1 to m/2 at {=c0. The
value of R on the abscissa is=1, if £>1 but for £<1 it
is given by (2.14).

THE «==CONST. CURVES:

For the N.H. ¢ is always positive. The lines £=1, and
n=0 (figs. 1 and 2) divide the plane into four sections
(I, IT, III, IV) as shown above. We can find out the value
of « with the aid of (2.11), and for its sign, we have to
look to Table II. (2.11) can also be written as:

(022 _ ()2 _

cos? & sin? «

(2.15)

C(iLLECTED SCIENTIFIC PAPERS OF MEGHNAD SAHA
1

2
or %- sin? 2«¢+-cos 2y+4-cos 2¢=0 (2.154)

When we wish to draw curve «=const., we can do so
by using (2.11 or 2.15a). A few curves are given in fig.
(1, 2). It is seen that for «>0, these curves all cut the
abscissa at right angles at §=sec «. The point (0, 0,)
through which the curve appears to pass is to be excluded,

.
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.
.
.
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o' L4
L.
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.
.
.
.
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but the curves approach this point at the angle #/2—y
to the abscissa.
The sign of « is positive in sections I, II, 111, but is negative
.in section IV. We have «=0 for the abscissa up to {=1;
oh the ordinate x=w/2 above the abscissa and = —m/2
below.

Let us see how to draw the curves R=const. It can be
shown from (2.12) that

)+ ') (2" o

Now let us put R=tany; then sin 2¢= —I—Q_F%, tan

2= %; we can rewrite in the form

X2=sin? 2y {1--tan? 2¢ cos?y} (2.164)

This gives us the polar equation in the £q-plane for
R=const. curves; when R< <1 we have sin 2¢=2R< <1
and (2.16a) reduces to 2=(2R)?, i.e., the R=const. curves
are circles. But as R becomes larger, we have curves as
shown in figs. (1, 2). We observe that for R<1, these
curves cut the abscissa (y=m/2) at f’)=sin» 2= l_i—Rﬁ’

and the ordinate (y=0) at n=tan 2= 1—2:1%5 The curves

crowd as we approach the point {=1.

So far the R=const. curves are confined to sections I
and IV. Let us now take sections II and III. From the
expression

Re=(¢ tan <—)/(¢ tan <+)

We have R<1 in section II, but in Section III

i.e., at the mirror points (¢,7), (£,—n), the values of R are
reciprocal to each other. In Section IT, R<1, and in section
111, R> 1.

The R—constant curves for graded values of R are
shown in figs. (1 and 2). In I, II and IV, R<1, while in
III R should be read as 1/R, so that R>1 in this section.
It is to be noticed that for R< 1 the curves are confined

V3
to the left-hand side of £¢=1. The curve R=713 touches

the line ¢é=1, and the curves with R> % cut £¢=1 at

two points. For values of R=I, the R=constant curves

are nearly circles with centres at (0, :};l—_l_%a) and radius

lng except very near the point £=0, 7=0. The family
of R=constant curves cuts orthogonally the family of
«=constant curves.

Scott (1950) has drawn curves similar to those given in

" figures (1 and 2).

Let us now study the polarisation of the incident and
reflected waves in the light of the above discussion. The
following table gives the phases for the general and some
particular cases, of the eight field quantities E and H
for both V and W-waves.

The figures in column 2 are obtained from (2.3), (2.4).
For others see infra.

We have at present no means for determining 6y and
8. For the ground, however, since =0, §=0 and «=m/2
for the N.H. we can easily write out the phase differences.
They are given in column 3.

We have, therefore, for the ground

we have
£ tan <+l 7| v v Gy
2 . — =— — §i w_
R  tan -(.—I'ql>1 E, =Cy cos pt, E, R Sin pt, E; = Cw cos pt,
TasLE 1
Phase Phase Difference at n=0 Phase Difference
’ Phase Difference
Angles r=0, »=0 1£1>1, €>0 1£€1<1, >0 1€1>1, £€<0 1£i<1, €<0

EY m—&—0p 2 m—sec™1 1£1 ™ sec1 1£1

14
E; —8y 0 0 0 0
E:V x—0y w2 sec~l | €1 0 7
E;'V m—0y T T T mtsec 1 1€l T
Hr 0 - -
HY —mf2
H:V T
HY 2 {
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J

1

E}= —RCy sin pt, g

H = %K sin pt, H',=—Cy cos pt, H¥ = —RCyysin pt,
HY= —Cy cos pt. e

The value of R can be obtained directly from (2.12)
or from the condition 7=2R/1(—R?). We have generally
for any point on ¢=0 (no damping),

R=+/TF T~
n

and for =0, we have
R=1/TF352-5,.

The polarisation-ellipses described by E and H for V
and W-waves and their senses of rotation are shown:in
the figures given below for an assumed value of R=16.

N.H.(Ground) v

E
¥
ld ' N

€-wave

Fig. 4

It is instructive to see how the polarisation varies with
height. For r=1 we can easily deduce the values of the
relative phase angles for E with the aid of the above rela-
tions which are given in columns 4 and 5 of Table I.
We have not given phase-angles for H, as relation (1.24)
then no longer holds. We have now for ¢é= 0, r=1.

EY =Gy cos pt, EV = Cy sin pt, EX =Cy cos o,
Er" = —Cwsin pt.

These are circles as shown in fig. 5(¢).

For {> 1, r=1, putting ac=cos—1—;-

C . C .
e e A v

74 Cw

. G .
E'= _\/1——_1/55“1 (pt+«), EF=— \ﬁ@Sln bt

(a) () (¢ (ar (o
2 B N B '
161 << ! 1811 1§1=1 15151 1611
(At 1=0)
Fig. 5

These are ellipses, circumscribed within a square as
shown in fig. 5(a), the contact points being given by (2.17a)
and the ratio of axes arey/(Z—1)/(& +4-1), the angle of tilt
being n/4. For £=1, r=1,

Ef =~ —sin pt, E,f’ ~sin pt, E:V:'sin o, E:V: —sin pt

The ellipse reduces to a straight line coincident with the
diagonal of the square. For £<1, r=1.

E] =—sin pt, E] =R-.sin pt, EY ~sin pt, E =R sin pt
This is shown in fig. 5(c).

For £>1, the curves are lines forming diagonals of two
oblongs as shown in fig. 5(4), the ratio of the sides of the
oblongs being given by R or R-1.

When ¢=0, r=1, we have R=0, R-=c and the
polarisation ellipses reduce to two straight lines parallel
to the magnetic axis and perpendicular to it (Fig. 5(a).)

Figures of polarisation ellipses for r=1 have been given
by Booker (1934) for the magnetic vector. It will be seen

that the diagonal lines in our figures are in the first and
third quadrants. This is because we have drawn polarisation
ellipses for E, while Booker has drawn for H.

In general, omitting 6y and 8y we have for any point
of the ionosphere where R and « have the values given in
Table 11

C . (&
V__ 4 _ V= | 4 .
E, = s Sin (pt—=), E, R Sin
w_ Cw . w_ _ RCy
E, —-msm (pt‘i-ﬂ(), Ey = Sin_c(,SIn pt.

Now eliminating pt we deduce the following .equa‘tions for
the ellipses described by E, and E,:

(EY)®4-2R cos « . B! E + R¥(E,)*=Cp -
(EY)®4-2R-1 cos « EY EY + R-2 (E,)2=C}, '
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Tasre 11
= kB 1—r ip=Reik Polarisation of the electric vector
. 3¢ R o4 Nature of polarisation Sense of rotation
A/ T¥qi—1 +Z Ellipse; ratio of axes=R; Tiltangle=0 | Anticlockwise for
1£1=0, =0 >0 171 2 (o-wave and e-wave) o-wave and
=Y 0= Clockwise for
e-wave
<0 Do. _7 Do Clockwise for
2 ) o-wave and anti-
1 . clockwise for e-wave
1é1< =0, 1—+/1T—F 0 for £>0, Linear, tilt-angle tan-1 (—R) and
(r=1) —> | gpfor £<0 B ‘
1€l tan~! { —- ) for two waves
1£1=1 7=0, 1 Do . \ R
(r=1) ) Linear, tilt-angle—=/4 and /4.
1§i>1 7=0, 1 Sec1 1£1 Ellipse, ratio of axes = }____I gi—1 Anticlockwise for
(r=1) Ist Quadrant | . \NTaFT o-wave and
for £>0, Tilt-angle —n/4 and +/4 Clockwise for
3rd for £ <0 e-wave
i Anticlockwise fa
2>0,1£1<1 R<1 0L L2 Ellipse, defined by eqn. (2.17) noisvgse‘;l:lfi or
Clockwise for
e-wave
161>1 Do. Do.
£>0, (N. H.) ¢ LS 02 © Clockwise for
o-wave and
1é1<1 — . Anticlockwise for
¢ R 72 L0 Do e-wave
<0
1éi>1 B>l 0L K2 Do. Do.
1£1<1 . Do.
£<0, (S. H.) ¢ R 72 Do
>0,
161>1 B>l w32 Do. Deo.
181<1 Do. ‘Anticlockwise for
Rt ﬂ<‘_<3ﬂ12 ° o-wave and Clock-
7<0, wise for e-wave
. 1£é1>1 R 7k <32 Do.
£1=0, dc=00, 520 >0, (1—r
Equator) (+ ) 0 tan—! T) Linear polarisation, Tilt=0
—0 for N. H.
and =« for S. H.
as y—1
7<0,
(—c0) 0 Do. Linear polarisation, Tilt=0
fl=o00, 3v=0, <0 Anticlockwise for
8+ o (Pole) 1 +f2 Circular polarisation o-wave and Clock-
wise for e-wave
71<0 Clockwise for
1 —n[2 Do. o-wave and
Anticlockwise for
e-wave
Ground
(N. H.) 218 Ellipses, given by equation (2.17 Sense of rotation
A/ TF A —1 8¢l pses, gi Y eqL (2.17) dhown in figs. (3)
Ground . and
(S. H.) Do. Do. Deo.
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The axes of the polarisation ellipses are tilted with respect polarisation of the electric vector for any value of ¢,9 in
to x-axis through the angle i given by the last column of Table II.
tan 2‘/’V=2f_c$’ tan 2y¥W= _'21R—'__(ioRszi' §3. Tue CourLiNg TErRM
X1~ Let us now turn to the application of these formulae to
\\ . actual cases. For these, we require the characteristics of
\ \ ionospheric stations. These are given in Table III for a
\ _ _ number of stations between the geomagnetic equator and
\\ N.M.P.
i . » The second row gives the propagation angle 6 of the
Fig. 6 stations given in the first row, and the other rows are

self-explanatory. As we see from row 6, the value of v,
It is easy to see that y¥=(n+3) »—y». These ellipses the magnetic damping factor varies from oo at the equator,
can be shown tobe inscribed within oblongs having the  to zero at the pole, passing through a value of 75 x 10/sec.

sides ~at the ionospheric station nearest to the G.M.-equator,
C C to 5-5x 10¢/sec. at the Clyde River station which is nearest
(i sin -(.) R (i R sin c(,) to the N.M.P.

The values of all ionospheric quantities R, <, ¢, g2, ¢

t ing the si t the poi . ..
and touching the sides at the points are functions of ¢ and 5. Now ¢=v/v, and is independent

(£Crw/sin «), (FCp,w cot «[R); (FCp,w cot ), of p. The collision frequency in any ionospheric layer is

(:FCV,W%?-) . (2.17a) taken to vary as v=v, €xp {— z—lzo} , where [ is the scale

The ratio of the axes is given by height, v, is the value of the collision frequency at the tip of

the layer, z, is the height of the tip of the layer. The values

(1+R2)+4/(1+R?)2—4R?sin? « of vy, z, vary with the hour of the day, the season and
(14+R%)—/(1 F R2)2—4R*sin? < other factors. We have taken

~ 5 -
From these general expressions we can obtain the shape vf,__2.10 [sec. for the E-layer.
and sense of rotation of the polarisation ellipse at any point * - =210%/sec. for the F-layer.
inside the ionosphere. We have described the nature of  as good average values for v,.

TasLe 111

Equator Huancyao Calcutta Slough Kiruna Clyde River ‘| North Pole
0 90° 92° 112° 157° 167° 174° 180°
p—
1H| -296r 4341 -470T -514r -570T
o = H -829-10¢ 1-222-10¢ 1-316-10¢ 1-439.108 1-596.10¢8
2mme
sin%@
2 =507 o 14:31 1-148 -083 -026 -005 0
lvel = 2a/,Q © 74-50.10¢ 8:79.10¢ -686.108 -235.10¢ -055.10¢ 0
v = 2.10% 0 -269.10-2 2:27.10-2 29-2.10-2 84-8.10-2 364.10-2 ©
v i~
1¢1= iv_,I';
v = 10° 0 -134.10-¢ 1-14.10-¢ 14-6.10—4 42-6.10—4 182.10-¢ .
v = 2.108 .
. ! = 10 km. 0 -200.10-2 1.71.10-2 23-9.10-2 227.10-3 22-7.10-8 ©
l¢max |
v = 10
! = 50 km. 0 -040.10-2 -341.10-2 4-37.10-2 12-8.10-3 55-6.10-3 ©
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The corresponding values of ¢, are given in rows (7) where B=1% (1 —e G2l
and (8) for the E and F-layers.
We observe that for the F-layer, £, varies from ~10-% at 1
v Huancayo to 1-8x 102 at Clyde River. We can therefore . c (1+m2—¢£3)8 (8— —77) —2né?
‘take ¢ <<l for F-layer propagation. At the G.M.E. R‘(¢)=_2;l' T fg)cz B (3.4a)
£==0, and at the pole {=00. These points require separate
treatment. For the treatment of wave propagation through
" F-layer, we have therefore to confine ourselves to sections

We have therefore

1=+ e+2n8 (5 —)

; c

I and IV of the ¢5-plane. . Tn(®)= 2pl° (1+9n2—£2)2 4922 (3.45)
For the E-layer, £, continues to be small for low latitude

stations, but at Slough it has attained the value 29 and at B ( 1 _,,]) 2 12 1

times may approach unity. For the higher latitude stations, = S, (3.40)

e.g. Clyde River £,~3-63. 200" L (147> —£3)2+-4n2g?

PaTH OF THE RAY IN THE £7-PLANE From the above expression for | ¢ it is seen that this

attains its maximum value at 7=0. We have then
The vertical propagation of a ray in the ¢p-plane can

. 25 21 g2

be shown by a trajectory. We have ‘ | pmgx | = il [B(l/_éi;z;—i:l 3 (3.5)

£=¢, exp {—— Z—lZo} (8.1a) Therefore |dpex| is very large for £~1 and tends to

infinity as §—1.
1
and ”)=3_c(1“7'o}') 12
2 ' ‘

where r,= 4":”‘];': =p?/p? and . 7 10 1

l Z*Zo

y=e€xpy [1 . — “(Z—Za)/l:l (3_1b)
2 l 8t

is the Chapman Factor.

N, is the maximum concentration of ions in the layer. 6
Let us now consider the coupling coefficient ¢. It can be
easily shown that

. S| . 4t
bmtan ()= g e (39)
We obtain after some work .
1 (1—E49)942988
R, (¢)= 9" 1§ —E )2 42 (3.30) : :
; ) 10 12
I, ()= — L (1=E+n%) —2mi¢ (3.35)

2" (1-8+p)2+4p%e
= & A2-1g2 3
l¢l= 2 [(l -—-§2+.,]2)2_|_4_n2§2:| (3.3¢)

Let us now find out values of 4 and £. With the assumptions
made in this section, i.e. =y, exp.[—(2—2,)/{] it can be
easily shown that

A

4
du  p

Similarly it can be shown, assuming that J is given by a
Chapman-layer, that

S

¢
{
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When a wave of any frequency travel:l1 through a layer
we Observe that to every point of the layer there correspond
definite values of £ and 75; we can therefore plot on the
&y-plane a series of points' corresponding to different
values of z. The curves joining thése points may be called
the trajectory of the wave in the ¢5-plane. Such a trajectory
drawn for Slough is shown in fig. 7. The points ¢ and
n have been calculated on the assumption that the varia-
tion of collision frequency is given by (3.1a) and the
_electron concentration is given by (3.15). As we are
interested in the maximum value of ¢, we require the value
of ¢ at =0 on the trajectory of the wave in the ¢n-plane.
This value of ¢ depends on the frequency of the wave and
the location of the station. Fig 8 gives a number of (¢, 6)
curves (at n=0) for different values of p/p,. The layer has
been assumed to be the E-layer with v,=2.105/sec. The
corresponding values of ¢ for an F-layer with v,=103/sec.:
will simply be 1/200th of the values given by the curves.

COLLFCTED SCIENTIFIC PAPERS OF MEGHNAD SAHA

Certain conclusions can be immediately reached from the
nature of these curves.

The frequency at which the point (¢é=1, =0) is
crossed depends on the magnetic characteristics of the
station and the relation is given as

p=pc(velvo) te—nlve

For stations where the magnetic damping is large compared
to the collisional damping (equatorial region) this point
is reached when p< <p,, while for high latitude stations
ve<<<v, and this critical value of p approaches p,. For
F-layer propagation, since v,>>>1 practically over the
entire globe (excepting the small polar belt), it follows
that the critical point (¢=1, y=0) will be reached when
p< <P, 1.e. when the wave will fail to reach F-layer owing
to the presence of the lower E-layer.

Only when v fy,~1 cases of practical importance will
arise. Ionospheric stations like Kiruna and Slough are

TaBLE oF NOTATIONS

Quantity Saha et al. Appleton et al. Hartree Eckersley Rydbeck
Direction of Propagation z z .. z 2
Horizontal in Magnetic Meridian x x .. x ¥
Horizontal | Magnetic Meridian y P .. y x
Propagation Angle [} .. .. . 0,
Field Vectors E,HP,D E,H.P,D LH,D E,P, E,D,P
Earth’s Magnetic Field H H . H H H
Refractive Index © 3 " » " “,
Complex Refractive Index q=p—icklp cq K z Ve
Absorption Coefficient K K .. .. ..
Pulsatance - b P ke 2my @
Gyropulsatance %{ b bh ke 2avy Wy
Frequency f f ke/2x v o2
Gyrofrequency 5 3 kye[2m Ve . w27
Collision Frequency v v 2ksc Vo i
Relative Gyrofrequency f;/f=px/p ) —y/, L,y T T yIx3
Relative Collision Frequency v/p ) . .. &of2m 9
Phase Velocity v v .. -
Group Velocity w w ..
-— —_
Displacement of the Ion S0 9,2 P
— -
Dipole Moment , NeS Ne(x,9,2) NeP
Scattering Tensor ﬁTﬁ’;A—’) .. o —« ¢
—w
Ratio of Axes P R u
2
Critical Pulsatance ~72V¢ » 2 dnty,d w,
1 1
%Ne’/mp’=113/11’ , ey x N Z :"—oi
eH 1 . ,
map, [1—iv/p] —w/B K«H vglv . .
4nNe? %
g/ (—ilp) [1—pR1p* (1—lp)?] P — ; : .
4nNe? AnNet /. 1
P’ / [l W/P] f/B m a . .. .o
m[)v/4-1r.N¢' ' Slr B .
eH w
4,” Ne2 [ ] 7- b4 PI gy .o b4
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therefore suitable for observations of any peculiarities
arising out of this coupling term. In such cases | ¢! max will
be quite large and the approximate differential equations

(&)
© Q
& & 8808
T S o VPq
; o S N Yo
_ <+ n 1 n"‘-;,
2.0 q’! I-% Q. [Q a
1-5})
rob-—4———-—f- e [ = [- -
un
o5}
L J

1 L 1 L 5 1 —_—
120° 130° 140° 150° 160° 170° 180°
e

Fig. 8

+ 90° 100° 110"

will no longer be valid. Though this does not necessarily

imply that the large |4 | is solely responsible for the |

triple splitting: as has been suggested by Rydbeck, it

cannot be denied that the nature of propagation may be
profoundly modified. As no one has yet been able to give
an exact treatment of the differential equations, it is not

safe to make any definite statement about the nature of
this modification.
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86. OCCURRENCE OF STRIPPED NUCLEI OF NEON IN PRIMARY COSMIC RAYS

(Nature, 167, 476, 1951)

Bradt and Peters, in their analysis of the primary cosmic
radiation as observed in the out-of-the-atmosphere ob-
servations with the plate technique, have given the com-
pletely stripped nucleus of neon as one of the main
components of the heavier cosmic particles. In fact, the
relative abundance is given as almost the same as that of
-oxygen-16 (vide Fig. 13, p. 66, of their paper).

It appears that if the identification of the stripped
nucleus of neon as one of the main constituents of primary
cosmic particles be correct, and is confirmed by subsequent

51

Oh

observations, it constitutes a very strong argument against
the hypothesis that the sun is the source of cosmic
particles received on the earth*3. For to have stripped
nuclei of neon from the sun, it must be first demonstrated
that neon exists on the sun and is at least once ionized
on the photosphere or the chromosphere. The evidence
on these points, as will be shown presently, is absolutely
negative, in spitg of the fact that strong lines of Ne and
Ne* occur within the solar range of wave-lengths (3,000~
10,000 A.)
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