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to the author to be eminently desirableiin this country for
furthering such a work in an efficient and collaborative
way. It is a matter of sincere congratulation .that the
Council of Scientific and Industrial Research of the Govern-
ment of India has seen fit to make a grant for the develop-
ment of the physical methods to the determination of the
geological age. A great deal of work has to be done in this
connection and co-ordination of efforts between the geo-
logists and physicists has to be achieved. Some of the
fundamental apparatus for routine determination, e.g.
mass-spectrograph for isotope ratios, are still unavailable
in this country.

It is hoped that with future co-operative efforts greater
strides in the path of progress will be made in this field
of fundamental work.

We wish to express our heartfelt thanks to Prof. D. N.
- Wadia for having gone through the paper, and helped
us with very valuable suggestions in the preparation of the
introductory parts.
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82. ON THE PROPAGATION OF ELECTRO-MAGNEFIC WAVES THROUGH THE
UPPER ATMOSPHERE

M. N. Sana*, B. K. Banerjea anp U. C. GuHa

(Ind. Jour. Phys., 21, 181, 1947)

ABSTRACT

This paper reports a comprehensive working of the problems of an ionised atmosphere, traversed by a magnetic
field, as in the case of the Earth’s atmosphere. Expressions are deduced for electrical polarisation and complex conducti-
vity for such an atmosphere when traversed by radio waves, in a tensor-form, as first suggested by Darwin. The equations
of propagation of radio frequency waves through such a medium are obtained by the use of cardinal axes, and then
the equations of vertical propagation are deduced. Expressions are obtained for refractive indices of ordinary and exta-
ordinary waves, which agree with the expressions given by Appleton. Expressions are obtained for polarisation, absorp-
tion etc. of the radio waves travelling in the ionosphere. Curves are given for the polarisation ratio and refractive indices
of the two waves as functions of the magnetic latitude of the place of observation.

INTRODUCTION

Ever since the classical works of Appleton (1932) and
Hartree (1932), the problem of the propagation of e.m.
waves in the ionosphere has received attention from
numerous workers. Summaries of these works are available
in various reports. Recently B. K. Banerjea (1947) made a
critical and comparative study of the fundamental methods
of Appleton (1932), Hartree (1932), Saha, Rai and Mathur
(1937) and Saha and Banerjea (1945) and showed that
these various methods can be deduced as special cases of

a general method developed according to Darwin’s (1925),
suggestion of treating the e.m. properties of the mediumj
as tensor quantities. The present paper continues the
treatment further and aims at giving a true wave formula-
tion of the general problem. For the convenience of the
reader some results of the previous works carried out by the
senior author and his early collaborators are included so
that .no further references to these papers are needed. Part

*Fellow of the Indian Physic%l Society.
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of the results mentioned in the earlier parts are not new,
out have been derived in a novel, easier and unitary way.

The Displacement of the Ions in the Tonosphere

.~

The equation of motion of the charged ions referred to
my system of co-ordinates can be written as:

e dp
t+%[Hxa] nE (L1)

vhere p = displacement vector with components (é:m,0)-

dt3 it

¢, m = magnitude of the charge and mass of the ion
respectively.

= collision frequency of the ions.

Earth’s magnetic field.

= Eycos pt, electric vector of the incident
electromagnetic wave. '

v
H
E

The effect of the magnetic vector and the space charges
have been omitted as usual. The notation conforms as
llosely as possible to those used by Appleton (1932) and
saha, Rai and Mathur (1937) and B. K. Banerjea (1947).

It can easily be verified that the solution of the above
quation with E=E.cos pt is the real part of the solution
btained with E=F?*; we use E inethis latter form
pecause solution is then easy to obtain. The quantity
analogous to the static conductivity now comes out as
somplex (Stratton, 1942), whose real part gives ordinary
tefractive index and the imaginary part gives deviation
bf the refractive index from unity.

Introducing the polarisation vector P=4wNep where N
& the ion-concentration and using the abbrev1at10ns,

b N g
NeT g T AT T YT
vlp =3, 1—is =B, (12)
%{ = Pa % = w with components w,, w,, w,.

We get from equation (1-1) replacing p (£, 9, {) by

1
m(PwaPs)

BP, + iw,P, — iw,P, = — E, ,
— iwPy + P, + iw,P, = — E, ¢ . . (1:3)
iw Py — tw,P, + BP, = — E
The solution of these equations can be briefly written as
P=A A.E, (1-4)
ivhere A et 13 { ,B’ ) and A is a tensor given by the matrix,

It has been shown by Saha and Banerjea (1945) that the
tensor possesses certain ‘“Cardinal Axes” which may
be denoted by 1, 2, 3. “1” is the direction of the earth’s
magnetic field, “2” is the line perpendicular to the magnetic
meridian, and “3” is the line perpendicular to “1” lying
in the magnetic meridian. The relation between these axes
and the axes commonly used in ionospheric problems with
XZ as magnetic meridian and OZ as vertlcal is shown in
the diagram below: :

Yiz

Fig. 1
Shows disposition of cardinal axes (1, 2, 3) with axes
used generally in considering vertical propagation.

In this figure =< ZOl is called the angle of propaga-
tion. The axis Ol is always along the positive direction
of H. In general literature on ionospheric problems, the
positive direction of H is generally not expressed quite
clearly, with the result that the sense of rotation of the
electric and magnetic vectors of the returning radio wave
is left unclarified. In what follows-the positive direction
of H is along the positive direction of the magnetic lines of
force, i.e. in the northern hemisphere it is downward and
in the southern the reverse is the case. -

Choice of these axes is equivalent to putting

W, =w, W, =w; =0,

where w;, w,, w, are the components of w along (1, 2, 3)
axes. We have then

B—w? o. o

A=—|o B e (1.6)
| o . i-ife P

The complex conductivity ¢ of the medmm, deﬁned by

—p w,w,+ifw, “.’w%“iﬂ @y . the equation
A= | o,0,—ifo, w2—F  wetiBe.| (15 O E_.current_.{-Ne-_—szep=-if’-p=_‘1’A A E
| wyw,tifo, w,w,—iBay 2—pE is a tensor quantmy defined by the matrix,.

T a7
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1
T o) [s]
p—w -
__iNe? p—iv " —iph
=T ° G=er—m =g |7
iph - p—iv
g o S e

The steady current conductivity o#is obtained from
above by putting p=o0. We have

1
- o o
14
_ Ne v D
TETW | mER mee 49
—Pn v
s+ P

Thus in the direction of the magnetic field, the steady

... Ne?
current conductivity is e We have the components of
v

current as
Ne?

iy = e E,

B = N B Ey) (1.9)

Pomph ) " '

. Ne?

i3 = (p2h+vz) ( phE2+VE3)

. Ne? Ne?
If Ey=o, we have i, =T e s)"E . The quantlty ) +Vv2)
is known as transverse conductivity. We have besides, the
2

current 3= — ﬁ% E, along the Z axis, though there

may be no e.m.f. in that direction.
The Polarisation Vector—The polarisation vector P is

\

defined as P = 477‘ c.E

and we can easily deduce that

E=—£p, Byin — - BE® (pytipy .. (110)

The Electric Displacement Vector and the Complex Dielectric
Tensor—The electric displacement vector D=E +P may be
expressed as D=K. E., where K is the complex dielectric
tensor given by the matrix,

1—r/B o o
K=| o 1-—rf/(f2—w?) ir e (B2 — w?) .
° —irof(ff—o?) 1—1B/(B*—w?)

a-11)

2. THE MaxweLLIAN EgQuaTions

~ From the Maxwelllan equations:

1 9D IBH

VXH== =, VXE=— 5 V-D=V.H=0 .. (2])

~ We get by the usual methods, the equations of propaga-
tion for the electric and magnetic vectors in the form:

NEAE (1-1]8) Ey=o
VAE£iE) +5 (1-r/(Bw) (BytiB) =o | (22)
v+ 5=—1g « (o)

The Wave Equations for Vertical Propagation in any Latitude :—

Let us first confine ourselves to the propagation along the

d a?
. s 9 d
vertical Z-axis, so that \V and /2 simply reduce to dzande_““

Introducing the new variable u=pz/c, we get from (2-2)

€£‘+( B) E, —o. (2-3a)
3 BBt (1 - 2) (Bi+iB)=o. .. (23b)
;I%(Ez—mapr( . >(E —iE)=o. .. (2:3¢)

The components of the vector E in two systems (1, 2, 3)
and with XZ.plane as magnetic meridian and OZ as
vertical are related as:

E,=E,sin §+E, cos §; E,=E, sin §—E, cos 6.

E,=E,; E,=E,.
(24)
Ey=—E, cos 0+E, sin 0; E,=E, cos 6+ E,sin 6.

w,=w sin 6, w, =0, w,=—w cos f

The equations (2.3) as such are not suitable for use when
we consider the propagation of plane waves, for such cases
we have to use in conjunction with (2.2), the Maxwellian

condition ¥/ .D=o. For vertical propagation, this reduces to

d
T D,=o, i.e., D,=o, since the steady components of D,

if any, are unimportant in the study of the wave
propagation:

From D,=o0 and (1.4) and (1.5) we have ehmxnatlng P
P,P, and putting w,=o.

E, =ZF (—w,F, +igE,), (2.55 |
where C'—B(B’ w’*)—-r(f-?2 —u;).

‘Multiplying (2.3a) by sin § and the difference of (2.3b)
and (2.3c) by —cos 8, adding the results and then replacing
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E,, E,, E, by their equivalent expressions in terms-of E,,
E,, E, from (2.4) we get after some simpliﬁéaﬁon, '

dZ‘; + KB - . zLE =o, (2.6)
o e —rB— 2
whére K, =1 — , B1B—w?sin®d
A C!
/ ' (2.7)
L L _rlB=nwcost

-G

Again replacing E, and E; by E,, E,, E, in equation
(2.3b) from (2.4) and E, by E, and E, from (2.2), we have
after some work,

PE
2 T KeFy +iLE; =o, (2.8)
where - Kyel—r Bzg,’ﬁ, (29)

Equatxon (2 6) and (2.8) were obtained cxphcxtly in
this form by Saha, Rai and Mathur (1937). Equivalent
equations' with vector components of the ordinary and
extraordinary waves intermixed in each equation were
‘obtained by Rydbeck (1944). But equations in 'this form
do not help much in the understanding of the phenomena,
unless: the coupling term L between the variables vanishes.
This ‘takes place at §==/2, i.e., at the magnetic equator,
where the equations of propagation become,

(2.10)
dZE .

P -’ .(1 o

L [ —"——‘—',_ E=0

co T guEe __’__“’-> ¥
B—r

For the magnetic poles, § == and o, and for these valﬁcs of
6, K,=K,; for 8=m, ie, mag N-pole, the equation of
propagation takes the form:

d 2 (E, :i:zEv) + (1 )(E +iE)=o. .. (2.11)

For 6=o, i.e., mag. S-Pole, the equation similarly reduces to

%(Ewi”?v)* ( )(E,:!:z Do . .. (@l1a)

) B :b

qua.tidﬁ in these forms were studied by Saha and Rai
(1937), for. the case when damping is negligible, i.e., =1,
from the wave mechanical point of view. The Chapman
layer of ion-distribution was treated as a potential barrier
and the penetration of the waves under certain simplifying
assumptions were studied in the same way as Gamow did
in his famous work on the. “Penetration of the Potential
‘Barrier of Nuclei of Atoms by High Energy particles.”

Recently Rydbeck (1942) has studied these equations when
the coupling term L -vanishes; he has given an elaborate
treatment of the wave equations for magnetic equator and
taking a parabolic ion-layer and using Weber’s parabolic
functions he has obtained expressions for the reflection
co-efficient, transmission co-efficient and phase retardation
of the wave in a thin friction free parabolic layer. In the
ray treatment of Appleton we practically confine ourselves
to these two limiting cases, 2iz., their quasi-longitudinal
case is for =m, o, i.6.,, K;=K, and their quasi-transverse

L =o.

case, t.e., 0 '=,1—2’: , | |

"The foliowin‘g’ method will be found applicable to ‘all
stations. Multiplying both sides of (2.8) by “iF,” and
adding to (2.6), where F is an indeterminate multiplier
to be presently, determined; we have

A*E
2 7+ (K —FL)E (Kz— —) iFE,—o. (2.12)
Now choose F in such a way that K; —FL=K,— % 50 that
F is given by the equation
FZ-—-E.I%IS—E F—1=o. (2.13)
K—K, _ wsi®to o
Put L — (—p) cosb =2G=2g:cos «&%, .
- wsin?f R
‘wflerc = =Ty cos’ tan o< = y—. (2.14)
Let Fy, F, be the roots of equation (2.13). Then
F, F,=GLVFG |
=g4++/14g® - for §=o. (2.15)

Now turning to equation (2.12) we can rewrite it in the
form

Ir (E —I—zFE,,)-{—q’(E,-{-zFE,,) ZF ddE Ji:l:E =0
(2.16)
where q has the two values given by
L
qA»-K — i —Kz—l—LFz—-l—— (B y)(B+w cosGFz)
.7 ._ ’ . -
=l rraces oy 4 . (2‘f}7)

L }' 4

9t =Ky — = Ky+ L =1 5 (B—)(B+wcos O F,)
r i T B

B+ w cos ? F,’

for €' =(B—r)(BHjw cos 0 Fy){B+w cos § Fg) - |

=1— (2.18)
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In those cases where the quantities Z—F 7 fcan be neglected,

the equations can be written as

% (Ex+iF1E?) +q.*(E,+iF,E,) =0
. (2.16a)
d2? .
m (Ex+iF,E,) +q22(Ea:+iF2Ev) _=O

These signify that the beam is broken up into two,
with the refractive indices ¢;, and ¢,, and polarisations
determined by F; and F, (Vide §4).

We next proceed to discuss the case of friction free
atmosphere. In this case we have

r

2 — . —————————
9" =1 1+ wcos0F, (2.17a)
r
2 — B —
%=l = T, (2.184)

Both ¢,, ¢, are to be continuous functions of . We find
from the expression for g, that for r— 1, g—o0. At this
point, g%, ¢,% should obey the condition of continuity, i.e,

L: 2 g.2)= Lt 2, g,2).
l_o(‘h:92) '=1+0(‘11:‘12)

Taking first ¢,, we find that if we take for the region
r=>0 to r=1 :

]

1—- @ COs 0(\/ 1+g%—g)
(2.178)

Then g, varies from 1 to 0 in the domain r=0 to 1.
As the value is to be continuous, and since g on crossing

over to r=1-40, becomes negative, we find that for this
region (r> 0) we should put

Fi=v1+g —|g]

F,=g—v14g, consequently q2=1-

te,q2=1— (2.17¢)

r
I+ wcos 0 (vV1+g2—|g D
These expressions for g, has no singularity at any point
and it is identical with the expression for the refractive
index of the ordinary wave as given by Appleton. A(r—gq,?
curve for different values of 6 from expressions (2.17 b, ¢)
is given in Fig. 2, for w<1, and w>1.

For the other beam we can now substitute the corres-
ponding value of F,, we obtain:-

AN

2.1 — =] —
9:"=1 14+ wcos 8 F, 1+w coso (\/H-gz-i-g)
forr=1 (2.185)

r

=]—
l—wCOS 9(.\/1 +g2_Hgl

for r>1. +-(2.18¢)

I
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ﬁ—i

r—

Fig. 2
Variation of the square of the refractive index for the o-wave with

2
electron concentration r =(l1,,L;i N), for pn/p=w<1 (here *5) and w>1
(here 1.5)

It can be easily shown that for w < 1, (r—gq,?) —curve starts
from (o,1) passes through (1 —w, 0) and a point of infinite
1 — w? cos?8 .

o3 where it passes from — oo to
+ 0, passes through the point (1, 1) and (1+ w, o) for all
values of 6.
¢*; has therefore to be ldentxﬁed with the square of the
refractive index of the extraordinary wave (Fig. 3).

For w> 1, we find that the curve passes through (o, 1)
and (1,1), between r=0, and 1, ¢2,> | but after (1,1) the
value of g2, becomes less than unity and gradually tends
to the value zero at r=1+w, after which it is-negative
(Fig. 3).

The quantities g(w, r, 0), —F=4/14+g% —lgl which
occur in this work are functions of w, r and .

In Table 1, the function g(w, o, 8) has been given for
various values of w and 6. To obtain g ( w, r, 8y we have to
divide g(w, 0, 6) by (r—1). -

singularity at r=

-5

T A —

.20

Fig. 3
- Variation of the square of the refractive index for the e- wave with

electron concentrati'o'n( = — N) for pn/p=w<1 (here -5) and
pulp=w>1 (here 1-5).
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TasLE 1

g=w cos®0/2 sin 0, r=o0

0° w=1lo=2le=3|lo=5jo=8lo=10|lo=15] =2 &=>5 w=10 |o=20|w= 5] 0=100
91° 28640 | 5-7270 8-591 | 14-315 | 22-908 | 28635 | 42-955 | 57-270 | 143-15 286-35 572-70 | 1431-5 | 2863-5
92° 1-4310 | 2-8620 4293 7-155 | 11-448 | 14-310 | 21-465 | 28-620 71-55 143-10 286-20 | 7155 1431-0
93° <9525 | 1-9050 2-858 4-763 7-620 9-525 | 14290 | 19-050 47-63 95-25 190-50 | 476-3 952-5
94° -7135 | 1-4270 2-141 3-568 5-708 7-135 | 10-705 | 14-270 35-68 71-35 142:70 | 3563 7135
95° 5695 | 1-1390 1-709 2-848 4-556 5-695 8-545 | 11-390 28-48 56-95 113-90 | 284-8 569-5
190" 2793 -5586 -838 1-397 2:234 2-793 4190 5-586 13-97 27-93 55-86 | 139-7 279-3
105° -1802 3604 541 ‘901 1-442 1-802 2-795 3-604 9-01 18-02 36-04 90-1 180-2
110° -1291 -2581 -387 645 1:032 1-291 1:935 2-581 6-45 12-91 25-81 64-5 129-1
115° -0972 -1944 292 -486 777 972 1-460 1-944 4-86 0-72 19-44 486 97-2
120° 0750 -1500 225 -375 600 750 1-113 1-500 3-75 7-50 15-00 375 75:0
125° -0585 <1170 176 293 468 485 -880 1-170 293 5-85 11-70 29-3 58-5
130° -0457 -0913 137 -228 -365 457 -685 913 2:28 4-57 9-13 22-8 457
135° 0354 0707 -106 177 -283 354 530 -707 177 3.54 7-07 17:7 35-4
140° 0270 -0539 -081 -135 216 270 -405 -539 1.35 2-70 5-39 13-5 27-0
145° -0201 -0402 -060 -100 -161 201 -300 -402 1-00 2-01 1-02 10-0 20-1
150° 0144 -0289 <043 <072 -115 ‘144 215 -289 72 1-44 2-89 7-20 144
© . .155° - 0099 0197 030 049 -079 <099 150 197 49 ‘99 1-97 4-90 9-9
. 160° 0062 ‘0125 019 <031 <050 -062 -095 <125 -31 -62 1-25 3-11 6-2
165° <0035 <0069 010 017 -028 ‘035 050 069 17 -35 -69 1-72 35
170° -0015 <0031 -005 -008 012 015 025 031 -03 -15 31 -80 1-5
175° 9004 -0008 <001 -002 -003 <004 005 <008 -02 04 -08 21 -4
176° -0002 -0004 -001 001 - 002 002 -004 ‘004 -01 i 02 04 10 2
177° <0001 -0003 000 <001 -001 -001 -002 -003 99(5) -01 02 -05 -1
178° -0001 -0001 -000 -000 000 001 001 -001 00(3) 00(6) -01 -03 -0(6)
179° <0000 -0000 -000 000 -000 -000 -000 000 <00 00 -00 00 <00
180° -0000 0000 -000 000 -000 <000 000 -000 -00 -00 -00 -00 00
. *
‘3. Finrte DaMpinG Solving the above equations (3.2) we get
We next discuss the case when § < o, and in so doing . sintge 2g% sin?«
we have to formulate the expressions for polarisation ratios 1 '
o e . +g24+1/142g2 cos 2«-}-g*
and refractive indices in such a way that if 8§ — o, these £+v £ & . .. (3.3)
general expressions should reduce to those discussed in the 1—p? .
“ : . : tan ¢=—-— tan «
previous section. 1+p

In this case F; and F, are complex roots of the equation
(2,13). Let us put

F,=—p ¢, and consequently F,= 71) it (3.1)

since F,F,= —1, with the condition that p is always positive.
In the particular case §=o0, we have ¢=o0 or =. Since F, is
negative for r<|, therefore ¢=o for r<|I. Again F, is

positive for 7> |, therefore, ¢== for r> 1. So we get for
8=o, : '

. p= I+g2—lglforr> =, <1.
Now : S »
’F1+F,=% &% —p e~ =2g cos xe%=2G.

Equating real and imaginary parté, "

(1 —bf). cos. ¢ (‘},—Pb)' —3sin ¢ (‘;‘H’) _ _wsin?b

“cos 6

(3.2)
dcos¢ (—:).'—p) +(1 —r) sin ¢ (%-I—p) =0,

or cos ¢{(1/p)=p}=2g cos®«,
sin ¢{(1/p) +p}=—2¢ sin « cos «.

and p=414/1+g? cos?x—sin%p+1/g2 cos24¥sin2¢. (3.4)

This expression for p cafn» reduce to the torresponding
relation for =0 only if we take

p=+/1Fg%osP«—sin?p—+/g%cos’—sin’p. .. (3.4&)
Hence 1/p—p=21/, gcos’«—sin’*$ > o, for all values of «
and g. Thus p<1. Then returning to the equations (3.2),

we have for northern hemisphere for the region r=1,
ie,g>0

cos o, sin ¢ <0, t.e., Im[2<p<2m,
and for the region r>1, i.e., g<o

cos =0, sin ¢ <0, t.6., m<d < 37[2.
The case in the southern hemisphere is just the opposite.
The results can be tabulated as shown in Table II.

With these complex expressions for F, and F, which
reduce to the expressions discussed in the previous chapter,
we get the ordinary and extraordinary complex refractive
indices as

g; _ r _1]— r —1_ r
90°=1 Bt+w ca‘( 0F, 1 ﬂ—wpcosﬁe“’_l Xo—iY,
l - — -

| (3.5)
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! Tasre 1I
d=o0 >0
0 r ' wsin®
=g eosd
T SO S S S B ot E WY N p $ o
| NH | o« ) | viTgg— | o 3/2n<$ <2n
] #2<0<e | s1 ) | vIFeitlel | | 7 | viTacord—sn'g | m<p<32n
! SH <t | () | VIFetel | = | —vVEo <% | o<p<n2
0<f<n/2’ >1 (+) ViTg—g o | | /2 < <m
H N | L . H L . | " i ! i

wh‘%r,e ' Xo=1+wp cos'0 cos ¢, }Yo”_"a’}‘ ap cos Osin .
g.2=1 LA a —E'—'j r
°” ,S—f-w cosg(?F2 ,8+Q/P¢050l"_7"¢ X,—iY,
36

where X —-I+w/p cos 3 cos ¢, Y 8+w/p cos 9 sin ¢.
Followmg: Bookex‘ we mp.y put q—y. (zck/ﬁ)

21:2’ » ~r=X 21wk rX

- P XYL

Then pz — X2+Y2’

(3.7)

and for the non-deviating region, where ck/p < <l

L p(l Y X
L

We have thus for the non-deviating region:

2 ]-r 1 —wp cos 000s¢ h
Fo=0 wp Cos 0cos¢)3+(8+pw .cos 6’sm<;$)2
> (3.8)
_ P (1 \8+pwcosfsing ,
"% (* ") 1 —wpcos B cos ¢ : : J
7‘;,=1, 1+w/,o cos 8.cosg; 9.
e (1+w/pcosﬂcos¢)3+(é‘+w/p cos@smq&)? 3.9
R
_t (1 ) 3+ w/p cos 0 sin ¢ _ 59)
2 \p,—pe (l+w/p cos&cos 95) g J

The correctness of -the above expressmns can be tested for
special cases:

For t‘he magnetlc equator, 6——11-/2 we have from (3.4a),
p‘—‘O and 51:0 —i =il£—r . Hente, we get the equations
(2.10), as special cases of (2. lﬁa)‘ For the magnetic north
pole, =, p=1, ¢=m, hence (2.16a) reduce to equations
(2:%1‘) ~For fhe ‘magnetic “south’ pole §=o0, p=1, ¢=0,
hence (2.164) reduce to equations (2.11a).

and d-— (K, +K,) ZHy +(K K, LZ)H =o ..

; 4» PoLARISATION

Let hs next hlscuss the polarisation of the down-commg

* wave for any station fot a stratified, slowly varying ionosp-
" here with ﬁmte damping. Since the e.m. waves which

are pr()pagated in such a medium are not transverse in
the electrlc vector E, but are transverse in the magnetic

© vector H and in the thethod of detection, the H vector

is utlhked it is customary to express the polarisation of

' the waves with resnect to the latter. So we start with the

equations of propagation of the magnetic vector, viz.,

CLBH, b ' S :
R LRM, —LH,—o . .. (4]
| keH, vl — o . (42)

in place of the correspondmg equatlons (2 6) and (2.8)
for the electric vector. Equations (4.1) and (4.2) - follow
immediately from (2.6) and (2.8) and (2.1). Eliminating
H, and H, from (4.2) and (4.3) rcspgcti\(ely weget

d*H, :
A 2 (K, +K,) T d2 F (KK ~L3)H, =0 .. (4.3)

P (4.4)
where the denvatlves of Kl, K, and L have been neglected
as before. The general solutions of (4.3) and (4.4) are

53U |

Hy= A 4 A9 A T T

15,1

H, =’B1é " Bze:-{-;szu 4 Bye zslu + B4¢_“’u .

where

K, + K — V(K — Ky 412
* 2 ¥ 7

52 &=

52 = K, +K, + VK=K 4K
o 2
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It can be easily shown that

52 = q2, 52 = 2%

,_Retammg only the solutions for the downcoming waves,
‘we get

T Hy = A, eiqau + A, cigyu (4.5)

H, = B, éigsu +- B, eiquu (4.6)

where ¢, and ¢, are those roots of 52 and s5,? respectively

which have the imaginary parts positive. Substituting
(4.5) and (4.6) in (4.1) we get,

(—q2A + Ky A
— iLB,) eigss = o,

— iLBy) cigu + ( — q* A, + K,

which being an identity in ¢ yields

—Q12A2+K2A2"iLBz=°
— ¢ A +K;A —iLB, =0

whence we have, referring back to (4.1) and (4.2),

B, _ -‘Iza—Kz,Bz _ “Ilz'—Ka :
A== p-itt L@

From the general solutions of (4.1) and (4 2) it is evident
that these equations represent two waves given by

H(l) =A, e, H‘v) =B, eiq.u
HD =A, cigu H® =B, cig.

travelling with complex phase velocities ¢/g, and ¢/q,
rcsPectlvely Following the nomenclature adopted before

& H') combine to give the downcoming extraordinary
wave and H(z) & H, @ give the downcoming ordinary wave,
and the polarlsatxon ratios for the two waves are

H(o) o Bz q12 _—
HO O TA L M
H, _B_.¢*'—K o
}7: = x =1 L _ng.
Taking  HO=R,, é(voe +£t), HO=R,, ei(voy+t)

where R, P.,,, y,, and y,, are real functions of u, we get
H (2)=Row cos (yout+pt), H (2)=R0,, cos (yoy+pt)
as the two true solutions of the problem with
E=E_ cos pt in place of E=E_ ¢,
(0)

Lo v

Hence W — ov ez('}'ov Yow) "=iF1= . lpe (¢ m(2),
- _ Ry

whence p= =

and ‘yo,-yw=¢_’_2"

are the ratio of the axes and the constant phase difference
between the » and x components of the magnetic vector

respectively. The equation of the polarisation ellipse for
the ordinary ‘wave follows immediately by ¢liminating
“pt” between the two equations in (4-8): We have

a2 H(:) H(o) H(a)z

sin ¢+

H9® — =R}, cos$. (4-9)
This equation shows that the axes of the ellipse-are tilted to
the respective y and x axes, the amount ¥, of tilt to the y

axis being given by
—_— (4.10)

The points of contact of this ellipse with the circumscribed

rectangle are (Fig. 4—) respect1vely (£Ryy sin ¢, £R p)
and (+R,,+-pR,, sin ¢)

Y

Fig. 4
Polarisation ellipse for the
reflected o-wave
(northern hemisphere)

Fig. 5
Polarisation ellipse for the
reflected o-wave
(southern hemisphere)

For the other wave

_ R,y e T
Pe Rm’ Yex '}’oz—"ﬁ"_?

and it can easily be shown that

1 .
Pe =P— and (Yoy—%Yez) — (Yoa—Yoz) =7 (4.11)
consequently the equation of the polarisation elllpse for

the e-wave is

ey ¢ LJe 2
H: +2HH in $ -+E2 Rk cosng
p

which shows the same ellipse rotated through an angle
#/2. For this ellipse (Fig. 5) the angle of tilt and the points
of contact with the circumscribed rectangle are given by:

2p sin ¢

tan 24, = — T—p2 =tan (2¢,4+7)
i (4.13)
: . R, R, .
and ( +R, sin ¢, i—P-) , ( ﬂ;R,,:[:T sin ¢)

In the experimental methods of determining the ratio
of the axes of the Polarisation ellipse, it is generally assumed
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that the polarisation of the downcoming wave is mainly
determined by the lowest layers of the ionosphere where N
the ion concentration tends to vanish. Recently Eckersly
(1945) has determined the polarisation of the downcoming
waves for p=6.1, 6.4 and 7.6 Mc. and has remarked that
in order to agree with his experimental results, the polarisa-
tion of the downcoming wave should be determined not by
the lowest layer of the ionised strata but somewhere inside.
Since there is as yet no definite and convincing evidence
either experimental or theoretical, of the particular strata
or the entire layer fixing the polarisation, we have plotted p,
the ratio of the axes for the o-waveasa function of '= O—g-

b
the magnetic latitude of the place of observatlons for various
values of w, for r, i.e., N—o.

Sense of rotation of the polarxsatlon ellipse can be 1nferred
from equations (4-8). Since the damping has no effect on
the sense of rotation of the magnetic vector, we infer- the
sense of rotation for the case where damping is absent.
In this case for northern hemisphere ¢=o0, and hence
equation (4-8) gives

Hz°=Rom Cos ('Yoz+pt)
H,*'=pR, sin (y,q1+pt).

0° ~30° 60° 90°
0'—
Fig. 6
. Variation of the polarisation ratio —p\/ 1+g3— | g| where
g= ‘zi%l-:—- for. varioys values of w=pn/p for different angles of

propagation. p—1 means circular polarisation.

Hence as ¢ increases from o, H,° decreases from R, cos y,;
to o and remains positive, while H,(®) increases from pR,,
sin y,, to p R, showing that the vector H,°, whose compo-
nents are H,° and H,° and which describes the ellipse given
by (4-9) is moving in the anticlockwise direction. Thus for
all waves received in the northern hemisphere the down-
coming ordinary wave is polarised in the anticlock-wise
direction as viewed along the direction of propagation.
For the extraordinary wave,

H;=R,; cos (y,;+pt)

H——

y

2 sin’ (yep+pt)-

Hence as i increases from o, H’ decreases as before but
H; becomes more and more negative showing that the
vector H° whose components are Hf and H; and which

describes the ellipse given by (4-12) moves in the clock-
wise direction. Thus for all stations in the northern hemis-
phere, the downcoming e-wave is polarised right handed
as viewed along the direction of propagation.

For the southern hemisphere the sense of the rotation of
the two ellipses will be just opposite since == for §=o0
in the southern hemisphere in place of ¢—~o for =0 in
the northern hemisphere.

.
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