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75. WAVE TREATMENT OF PROPAGATION OF ELECTRO-MAGNETIC
WAVES IN THE IONOSPHERE

M. N. Saua* anp B. K. BANERJEA

(Ind. Four. Phys., 19, 159, 1945.)

ABSTRACT

Wave-equations for the propagation of € m. waves through the ionsphere have been obtained by the use of a new
mathematical method involving the use of dyadic analysis introduced by Gibbs. Expressions for steady current conducti-
vity of the ionosphere have been obtained by this method and the results are concordant with those of Chapman; an
extra term for the conductivity, which is more prominent in the F,-layer has been obtained.

It has been shown that the wave is split up into three waves, as in Zeeman effect, one of which is ordmary, the
other two extraordinary, in accordance with observations by Toshniwal, and Harang.

1. INTRODUCTION

The subject ot propagation of electromagnetic waves in
the ionosphere appears to be at the present time in a rather
confused state. Appleton (1932), in his pioneering work,
used what is now commonly known the ray treatment,
i.e., starting from Maxwell’s equations, he obtained a value
of the refractive index of the e.m. waves in terms of the
electron concentration, the earth’s magnetic field and the
damping coefficient of electrons. He further postulated
that the wave gets reflected when the refractive index
vanishes. From the two values of refractive index it was
deduced that the wave splits up into two, one ordinary
and the other extraordinary and the sense of polarisation
of each wave was determined. The condition of reflection
of the extraordinary wave is, however, satisfied, at two
distinct levels given by the condition pg%=p%1-pp,.
appears to have been assumed that only one of these
waves, corresponding to the negative sign existed. Toshniwal
(1935) and Harang (1936) have however, obtained at
times reflections corresponding to the conditions p,2=p%+
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by, so that it is legitimate to think that the wave really
gets split into three components on entry into the ionos-
phere, one of which fails usually to get reflected owing to
heavy absorption. Further, we have to explain the pheno-
mena of M-reflections, which prove that the wave does
not get completely reflected even when p==0, but may leak
through the ion-layer in considerable intensity, and get
reflected from a higher layer.

The wave treatment was first attempted by Hartree
(1929, 1931) in three important papers. The papers of
Hartree are extremely difficult to follow on account of the
difficult notations used and some unnecessary complica-
tions introduced. He used throughout the notation of
dyadics., introduced by Gibbs. This notation, though much
convenient for mathematical working is not generally
familiar and to make the deductions intelligible the results
have to be transcribed to ordinary notations which was
not carried out by Hartree. Hartree obtained the displace-
ment of the electron or the ion as S. E where S is a tensor,
E =Electric field. This part is rendered rather complicated
because the electron is regarded as bound by a quasi-
elastic force. From the expression for S, he obtained an ex-
pression for © Cal?ed the scattering tensor. The underlying
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physical idea is borrowed from a paper by Darwin
(1925), who has shown that almost all optical phenomena,
e.g. reflection and refraction’ can be explained in terms of
scattering by elementary constituents of the medium.
Hartree has shown from the equivalence of two different

processes that the equation of propagation of the electro- .

magnetic waves in the ionosphere continues to obey the
Maxwellian form. The treatment was also rendered com-
plicated by the introduction of the term B, the Lorentz
polarisation term which he took not much far from 1/3.
It has, however, been shown by Darwin (1934) that 8=0,
and this considerably simplifies Hartree’s method. The
expression for refractive index was obtained by considering
the case of normal incidence in a stratified medium where
p is supposed to be constant. He ultimately obtains the same
result as Appleton. So far his treatment led to a justification
rather than laying the foundations of a rigorous wave
treatment. In a later paper he takes the wave equation with
a variable p and tries to solve this equation for a few simple
cases but it is obvious none of these assumptions corres-
ponds to reality.

Saha, Rai and Mathur (1937) expressed the displacement
of the ions in simpler analytical form, which may be shown
identical with those of Hartree in spite of the apparent
differences in form. From this displacement they obtained
the value of the dielectric tensor for a stratified medium and
ultimately obtained the same expression for p as that of
Appleton. The wave treatment was applied in a simple
case for the O-wave and the penetrability of the electron
barrier for a simple case was deduced.

In the present paper the foundations of a rigorous wave
treatment have been laid down and the expressions for
refractive index, conductivity and direct current conducti-
vity have been deduced. The solution of the wave-equations
has not yet been tried.

2. THE DISPLAGEMENT OF THE IoNs IN THE [ONOSPHERE

The equation of motion of the charged ions referred to
any system of axes can be written in the form

d*r dr e dr ¢E
_tz't-z_}-v_(zt—_*—;z:c[ngf]_E,’ (1)
where r=displacement vector of the ions with components

(E: 7 §)>
my=mass of the ions,
v=collision frequency of the ions,

H=FEarth’s magnetic field with direction cosines
I, m,n,

E=E, cos pt, the electric vector of the incident e.m.
wave with direction cosines I’, m’, n'.

Thc effect of the magnetic vector and space charge have
been omitted as uisual. The notation conforms as closely as

-~
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possible to those used by Appleton (1932) and Saha, Rai
and Mathur (1937).

It can be easily verified that the solution of the above
equation with E=E, cos p¢ is the real part of the solution
when we put E=E¢?*; we use E in this form, because the
solution is now easy to obtain. The quantity analogous
to static conductivity now comes out to be complex (Stratton
1939) whose real part gives ordinary conductivity,
imaginary part gives the deviation of the refractive index
from unity.

Starting with E=E¢?* and introducing the notations

4nNe* . . _eH
b’ = My > = wp _pz’ b = Mot H
ﬁ = ipph 5 r = (£> 7 c)eim'

and breaking up the above equation into components we
get

& + ippy(ml — ny) = m—ZE
iy + ippy(ng —1f) = ; m'E, @)
<L+ ippy(ln — mé) = mio n'E.

Solving these equations by the usual determinant method,
we have

£ = 2 (1B ' (<fin - fom)
+n'(Bnl— Bam)] [[x(«2+ B?)]
[’ (B3ml— Bxn) -+m’ («2+ B2m?)
+n'(B2mn+ Bl)] /[« (x2-+ B2)]
[ = %30—0 [ (Benl+ Bem) -+-m’ (B — )
+n' (224 B22) [« («2+ B2)] |

Let 6 denote the complex conductivity. We have

¢E,
my

L. (3)

0 .E =current = — Ne—g—: = — ipNer.

(%)

Substituting the value of r from (3), we get o in the tensor
form

o2 B2 B*ml—Bxn  BPnl+ Bam
Brlm~+Ban «*+Bm®  BPmn—Bal | (5),
BPnl—Boum  BPmn—+- Bl «24- Bt

Let us next find out the principal axes of the tensor
ellipsoid by using the Hamilton-Cayley method. The.
principal components are given by the roots of the equation,
22— DA% DA — D, =0, (6)

&, =spur of the tensor, o, g=x, 3, 2

_ —my/ipNe?
- «(¢+p)

where

Dy =2(04¢05s—04s0%7) 5, 9=%, ), 2, S#q
@, =Determinant of o.
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We obtain from (5)

BB O =B ) Byt B
LHénce the cubic equation reduces to

N (B4 Y04 343+ BN — (- ) =0
or [A—(«*+p)] [A—(+ixf)] [A—(«*—ixf)]=0. (7)

If v=0, «, ixB, and B are all real, and the roots are all
real, such a dyad has been classified by Gibbs as a tonic
dyad.

In general case, for v=:0, we separate the complex con-
ductivity tensor ¢ in (5) into real, and imaginary parts.
Then forming the corresponding Hamilton-Cayley equa-
tions for the real and the imaginary parts we get the roots
for Reo as

_ Ne? v Ne?
I_W'pz'—_—}_vg: 2

_ Ne® v+ip, .
T omp A+ (vt i)
Ne? v — ip,
N PGB )

andfor1,, O
Ne? 1,  Ne 1 .
T R T Tm R i)
Ne? 1
m PR+ (v — i)’
Dyads of this type, having two complex conjugate roots
of the H. C. equation are classified by Gibbs as cyclotonic
dyad. All the properties of the ionosphere are of this type.

Let us next find out the orientation of the characteristic
principal axis of the tensor . to the earth’s mgnetic field.
We consider a vector p such that

1 =

A = (9)

gp = Ap
where A is a proportionality factor. If I, be the idem factor

apZAI‘)p or (G—?\Io)pzo
i.e. (01— L+0;;M+06,sN =0
oy Li+(o3s—A)M-+oyN, =0 .. (10

o3 L+o03M+(053— AN =0 -

where L, M, N are the direction cosines of the principal
axis. Substituting A=«2+ 82 and the corresponding values
of oy1, 049, €tc., and remembering that L2 4 M? 4 N2 =

weget L=4+LM=+mN=-:=%n ENGT)

We thus see that the real characteristic principal axis of
the tensor @ coincides with the earth’s magnetic field.
Similarly we can show that the other properties like ordinary
conductivity, dielectric constant, etc., have the same
characteristic principal axis. The other two axes of the
cyclotonic dyad are in a plane perpendicular to this axis,
and may be oriented arbitrarily.

Let us next choose a new system of axes with the direction
of the earth’s magnetic field as the X-axis, Z-axis being
in the magnetic meridian and ¥ axis horizontal
perpendicular to the magnetic meridian. Referred to this
new coordinate system, let us now express the displacements
and the tensor ¢ in the new coordinates, We put /=1,
m=n=o0 in (5). Then

y o2 p? 0 0

__ —ipNe?[m, 2 B

= W o« «B .. (12)
0 «<f o2

and from (3)

¢ =‘,’,—,E0 [0 (<3-+ B2 1 [<(<2+ B)]
- ;n-E— [t + B’ [ (<2 + 7)) . (13)

[ = ;E [tn’ — o’} [<(2+ B9)].

Let us next form that the real parts of the displacements,
which are the true solutions of equation (1) with E=
E, cos pt. We have, putting E(I', m’, n") =(E,, E,, E,,)

E, v o,
= — m_o(;T—i-V_zS [cospt —_ ; s pt] - (19)

. ¢(E,+1E,) {
Re ntiRel) =— ————2——"—~= {cos pt—
(RenLiReD) == mlm+ o zipn 17
From the above expressions, we can easily obtain expres-
sions for the steady current electrical conductivity in the
ionosphere as obtained by Schuster, Chapman and
Pedersen. We have to put p=o

Re ¢

v.—_;ip k sin pt}

We get
_eEy | €

¢ = g N = i) VE,+pE.];

. e
{= ) [VE,—5E,)

We have therefore

2
I, =Nc¢ = —:i E, and

14

o, = 1,/E, = conductivity parallel to the magnetic field

Ne?
3 .. (15)

If now E,=o, ie the e.am.f is in the horizontal plane
perpendicular to the magnetic meridian, we have

o N
= e A

H
o . i . e
This is known as the transverse conductivity.

(16)
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We have an additional current alon’g the Z-axis, i.e.,
in the meridian plane perpendicular to the lines of force,
and the conductivity

Ne?p,
my(v3+p})’

If E,#o0, but E,=E,=o, we have flow of currents
both along Y and Z axes.

(17)

g, = —

We observe from these results that even when v tends to
zero as in the F region, we have a conductivity transverse
Ne? b
my " (+pR)

to the magnetic meridian = and this has a

L Ne?
limiting value —.
Mo

We have thus got an extra term for transverse
. . Ne?
conductivity, viz. —-. —;’L;

my ~ (v*-+pi)
known but we have not yet had time to examine its prob-

able contribution to the theory of L and S terms in
geomagnetism.

in addition to those already

3. Tue FuNDAMENTAL MAXWELLIAN EQUATIONS

The fundamental equations for the propagation of the
e.m. waves in the ionosphere are

I

UxH=1g %1, (18)
(4 ¢ )

v><E=—%H.

V. .E=4np.

vV .H=0.
Here ‘I’ denotes total current, which requires some elucida-
tion. We have I=o. E, where E=total field (i.c. sum of

incident field plus radiation field due to surrounding ions.)

Also in the ionosphere, it is customary to take p=o0. Thus
(18.1) is modified as

[

It can now be easily shown, taking curl of curl E,
etc., that E satisfies the equation

E 4
st“c-z_=—;c—z.oE

2 e N
or V2E+%(Io++-%° E =0 (19)
and similarly H satisfied the equation
I.. .
VH- g = -y xR (20)
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Now fora we have to substitute in the case of any coordinate
system expressions (5), but it will simplify matters if we
introduce the principal coordinates defined in (12). We
have then

]
1 +Tc 0 0
4mic Po% _ b
PPl Y e cegE| @
poB Fihs
Torp l+°c2+132

'The equations (19) can then be split up into three equations

szx_i_z;(]__%_) E, =0, (22)

pP—ip

pz
szy + 2 (bEII - CEZ) =0,

2
szz “'“i—)z (ﬁE,, =+ bEz) =0,

where b=l+{z%, c:c(Tp_”i_’g—Bz.

The last two equations had better be written in the form

VAE, i) + 5 {1- oA
€ PP—wpFpp,
From these equations, we see clearly that on entrance
into the ijonosphere, the three components E,, E, +/E,,
E,—iE, travel with different velocities, depending on g2, v,
and p,. If these quantities are slowly varying, we can talk
of refractive index. The E,-component (electric displace-
ment parallel to the magnetic field) has the complex
refractive index

} (E,+iE,)=0.  (23)

b
pE—ipv

po=1—

and the E,+iE,, E,—iE, components have the refractive
indices

7
PP—wpTFpp,

The analogy with Zeeman-effect is obvious; (E,+E,) ;
denote anticlock-wise circular polarisation and (E,—iE,)
denote clockwise circular polarisation. If we neglect. »
and put p,=0 we get Appleton’s conditions for the re- .
flexion of the o-wave, p7 =p?, and if we put u,=o0, we get
the two conditions for the reflxion of the two extraordinary
waves p=p®Fpp,, which have different sense of
polarisation.

‘The complete solution of the equations (21), however,
is rather difficult, for we are using a coordinate system

Po=1—
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which, except at the magnetic equator, and at the magnetic
poles, cannot be linked to the local coordinates in a simple
manner. '

.- At the magnetic equator, the X and Y axes are hori-
Zontal and Z-axis is vertical. In a vertical propagation
of the em. wave E,=O, and we have only E, and E,
definite. The reflected wave will therefore have its o-
component polarized parallel to the magnetic field, the
X-component polarized parallel to the Y-axis, i.e., perpen-
dicular to the magnetic field in a horizontal direction. We
have, however, not yet tried to evaluate E;, E, in terms
of the amplitudes of the wave sent out by the antenna.

For the magnetic pole, the X-axis is vertical, and for a
vertical propagation we have E,=O, and we have only
E,+:i.E, i.e, two circularly polarized X-waves. We have
to obtain the reflexion coefficient from a solution of (21),
which will be attempted in a future paper.
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§ 1. INTRODUCTION

Nearly twenty-five years ago, when the present writer
was preparing his paper “On a physical theory of stellar
spectra’ (Saha, 1921), he had the benefit of very sound
advice from the late Professor Alfred Fowler, who allowed
him to make free use of his (Fowler’s) own unrivalled
knowledge of spectroscopy and of stellar spectra. Fowler’s
remarks on this theory, which to my knowledge were never
put in print, may now be disclosed. “The thermal jonization
theory”, he told me repeatedly, “accounts in a general way
for the spectra of normal stars; but there are very important
exceptions, e.g. the stars with peculiar spectra, the planetary
nebulae; even in the case of normal stars, the great strength
of Balmer lines of hydrogen which persists throughout all
stellar classes is a disquieting feature, and in the case of
the sun, the peculiar behaviour of helium cannot, in my
opinion, be accounted for by the thermal ionization theory
at all”.

During the past twenty-five years, many of these points
raised by Fowler have been taken up by well-known
workers: Darwin, R. H. Fowler and Milne, Zanstra, and
others in this country, mostly on the theoretical side; and

*For fuller details, see Saha (1942).

by Russell, Bowen, Struve, Menzel, Payne, and their
co-workers in the U.S.A., Unssld, Pannekoek, and other
workers on the Continent. But the helium problem appears
to have remained very much as it was twenty-five years
ago. Briefly the problem is as follows: The Fraunhofer
spectrum of the sun shows only the lines of such elements
as have excitation potentials (energy values of the lower
state) between zero and 10 volts; in the chromospheric
spectrum, the lines of ionized elements are relatively stronger
but in no case, helium excepted, do we get lines of stronger
excitation than 14 to 15 volts (energy value of upper state).
The lines of He do not occur at all in the normal Fraunhofer
spectrum, except over disturbed regions, like penumbra
of sunspots, but occur prominently in the flash spectrum
up to heights of 7500 km. These lines have an excitation
poetntial exceeding 20 volts; but the line of ionized helium
24686, v=4R (% —%) occurs as a prominent but low-
level chromospheric line scarcely exceeding 2000 km.
in height. This line has an excitation potential of about
75 volts, and one fails to see how such high excitation can
exist in the sun, and that too in the lower levels.

The points were repeatedly urged by Professor A.
Fowler, and wefe repeated by myself later on many
occasions and héve also received attention from others.



