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INTRODUCTION

The introduction to this paper has already been given in
another with the same heading published in these Proceedings
(Vol. III, p. 359, 1937) henceforth called paper 2. The
present paper deals with the derivation of the equations
given in §2, pp. 363 and 364 of paper 2. There only a
bare statement of the equations was given;.here the exact
procedure of their derivation is given. The programme
of these series of papers may be defined as the wave-
treatment of the problem of propagation dealing with
questions of polarization, reflection, oblique propagation,
and absorption of the waves. We first give a fuller descrip-
tion of the notation employed.

NOTATION.

The notation used in this field of investigation differs
so widely from one author to another that the reading of
papers by different authors is attended with a certain
amount of difficulty. It is desirable that a system of inter-
national notations be agreed upon. In this paper, an
attempt has been made to use a system of symbols which
may be acceptable to the different schools of investigators.
We have, as far as possible, adhered to the symbols used by
S. K. Mitra, which were mostly adopted from the writings
of Appleton and his school. In some points we have found it
necessary to deviate from Mitra’s symbols. An explanation
of the system of symbols is therefore given at the beginning.

E .. Electric Field Intensity with components E,, E,, E,.
D . Electric Displacement Vector . D,D,D,.
H .. Magnetic Field Vector . H,H,H,
B .. Magnetic Polarization

P . Polarization . .. P, P, P,
h . Earth’s magnetic field components .. h,, k,, k,

(Mitra has used H for this quantity. But it produces
a certain amount of confusion with the magnetic
field vector, hence we have used ‘4’ to denote the
earth’s field.)

eh
s .. Larmor Frequency e
Pes by, P .. Components of Larmor Frequency.
Y/ .. Pulsatance of the electromagnetic wave.
N .. Number of electrons, or ions per c.c. at any

height. Whenever necessary the subscript ‘¢’
for electron, ‘¢’ for ion is affixed to N. Thus
N, denotes number of electrons. But usually
the suffix is not used.

4 Ne? . .
o> =p - either for electrons or ions.
v .. collisional frequency, i.e., number of colli-
sions made by an ion or electron in unit
time. '

(wyy @y, w,) _1 (pzs bys P2), o is the resultant value of

b
(wm Wy wz)

| h
ZZ(Ph)= =

mep
o dmNe?

y = — =

2 mp2 *

II

(24
l——=1-—-14.
B p
g = Complex Refractive Index.
§ 1.
TaE FunpaMmeNnTAL EQUATIONS.

The fundamental equations for the propagation of
electromagnetic waves are:—

Curl H=—i D
1.
Cul E= — - B
w ; .. (L)
Div/D = 4mp
Div/B = 0
:D = kE=E+4nP)
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For the present case, we take p=1 so that
- B=pH=H.

From equation (1.1) it can be deduced in the usual way

that
V=T Curl b
.. (12)

and V2E= cl—zE —i—j—:l" —47 grad div P

We have now to express P in terms of E.

Let us suppose that on account of the e.m. field of the
radio wave the charged particles suffer the displacement
£, m, {. The equations of motion of the charged particles
are given by

mf =eE, —gé+7 (ih,— {h,)+aP,

~

m =3Ey”"gi)+%(éhx_$}‘z) +aP, r o (1.3)

m{=eB,—gl +=(¢h,—ihy) +aP,

Here —g(¢, 4, {) represents the frictional force due to
collisions.

The third term.. .z—(vx}z) represents the deflecting force

due to the earth’s magnetic field.

We have further P=Ne (¢, », {), where J is the number
of electrically charged particles per unit volume.

The last term in (1.3) represents the action of the pola-
rization forces. It is now usual to take a=0.

We shall replace (¢, 9, {) by .}%e (Pg, Py, P,) throughout

?

(1.3), and let us further suppose that P is proportional
to ¢?t. Then the equations (1.3) reduce to
M p e, %p
Ne Pw—EEx .Ne Pw+NC (PXh)x
and two other similar equations.
The form of the equations can be much simplified if
we make the following substitutions:—

-~

_mp_ dpt dw
Ne2 ™ p2 7
& _g b _4mv | (1.4)
Ne2 mNe2lm r p
ph_eh _4dmp  Aupp, dro
eNe” mec 4nNe2lm  p2 ~ 1 |
Then the equations take the form
BP,+iw Py —iw,P= _4%_Eaa
—iw, Py PP, +iw L= — 4_’” E, + .. (L3)
tw,Py—iw, P+ P, = —4§rrEz ]
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These equations can be easily solved by the usual algebraic
methods. We can put

N

P,
Z: Alle‘{" A21Ey+ AalEz
4 (L.6)
Z = A12E:c+ A22Ey+ A:;zEz ¢ *
P,
Z= ANy O NasEy+ NssE, J
r |
where 4 = %—Bmz

Ars, €tc. are the subdeterminants of the determinant
formed by the coefficients of the quantities P,, P,, P, in
equations (1.5).

It can be easily shown that
An=w2—p? Ag=wyo,+ifow, A= w0, —ifw,
Azzzwuz_ﬁz A32=wzwy+iﬁwm A?a'—_wzwy—iﬂwz% (1'7)
A33=wz2_132 Alszwmwz'{‘ilgwy Aalz“’mwz—iﬂwy

These results will be utilized later.

§ 2.

PROPAQATION ALONG THE Z-AXIS.

We shall first consider the propagation of the rays along
the z-axis. Then the second set of equations (1.2) reduces
to the three equations:—

E, | &E, dx P, )

2 2 dE 2 4P

dE, | &E, 4m &P, ' L@
dz® 2 di2 % 42

CE,_| FE,_4x &P, , &P,

d2 2 diZ & diz T d2

for the terms arising out of Grad Div P are now simplified
as

0. 0 . 9 .. d2pP,
a—x(DN P)—Q, 5(D1V P)=0 and 52(D1v Py= 2
42
Further /2 reduces to-—.
dz®
The third of equations (2.1) is
a 1 &
(=5 ) Ecttnr =0, 22)
Now from the condition Div D=0, we have
9
o [E,+4wP,]=0. --(2.3)
From (2.2) and (2.3), we have
D,=E,44nP,=0. (2.4)

As according to (1.6), P, is a linear function of E,, E,,
E,, equation (2.4) enables us to express E, in terms of
E, and E,. We have :

Ez +4nA (AlsEx"I‘ A23E1I+ AaaEz) =0.
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A13Ew+ A23E1l
Lofet Lk,
(Bt )

The céluations (2.1) can now be put in the form:—
&@°E, Ky &£E, K, P°E, L

or E,= —

(2.5)

A2 & di? i 2 dit
PE, Ky PE, | Ky &E,
dz2~ & dif ' & di* J

(2.6)

where

Ay— A13A31
K=1+4n4
11 + A33+4ﬂA

Az1Des Aza
Kp=  4nd|0n~

Asst+—5—7 )

-
-
Asg Am }
i} -

beg | P2 1

K21=

A33+ 4'17'.A

A23 A32

Kyy=1-4nd { A= @2.7)

A33+ 4’11'/1
It is easily seen that

Dm=KuEm+K12Ey}

2.8
D,=KpEyt KuE, 28)

Egquations for the propagation of the magnetic vector.

Instead of taking (1.2) we take the equation (1.1). We
have then

ViH=— 1 curl D (2.9)

( for curl curl H=—V2H=%curl D )'

These equations reduce to
&?H, I_dl_)_j d*H,
dz? " ¢ dz’ d?
Now from (2.8) we have
D¢=K11E:‘x+K12E:‘y}
DV=K21E00+K22E11 ’
since the quantities K are not functions of time.

Further from the second equation of (1.1), we have

dE, dE, 1 (dH, dH,

& & ) (a0 e
Applying these conditions to (2.10) and (2.11) we have,
when the quantities X" do not vary with gz,

1,

¢ dz

(2.10)

(2.11)

curl E = (

PH, Ky &°H, Ky &H,

dz2 ¢ df T e

PH, Ky &H, K, & (2.13)
Z- T Ete @)

34

Also from (2.12) and the first equation of (1.1) we have,.
utilizing (2.8),

dE,_ _1dH, dE, 1dH,
a'z__c_ dt > dz cdt
dH, K, dE, _l_& dE, s (2.149)
dz ¢c dt "¢ &t
dH, Ky dE, Ky dE,
dz ¢ &t ¢ dt
when p,=0, the last two reduces to
dH, iL dE, Ky dE,
dZ’ C dt ¢ flt (2.l4l)
dH,_ _Kydb, | iL d,
dz ¢ dt ¢ dt’
where L= —r (B—1)w,/C".

We can now calculate the quantities K from the rela-
tions (2.7). First let us suppose that the collision frequency
v can be neglected. We have then

tnd = T,
: VRS W S, B/ E2% -4
whcre C=1—o?—r(l—w,?).
Ay — Duba _ (1—w2)<(r]+w:—1) ]
Aswtgz
Ny — Daslian =(1—w2)(rgwf—l)
Autamd . (2.15)
At — AslAzla _ (l—wz){www6+iw,(l—r)}
Nt
Ay — A13A312 _ (l—wz){wwwz;iwz(l—r)}
Aswtz )

From these expressions, we obtain the following values
for the K’s.

w2—14r
¢

*—1+r
K22 =1 _|_ rﬁ__é_.

Kn=l+r

. L .. (2.16)
K= wywy,+i(l—r)w,
12 — G
—i(1—r)
Ky = 22T % (C Jo,

4

The expressions fare cons1derablyvs1mphﬁed if we put
p,=w,=0. This means that we are taking the magnetxc

memdxan as our (x z)-plane. y
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We l;a\re m‘m;' -
Ky=1+r ‘”z”EH-f _ (l—r)_(lc_,_wg) ;
Famlt1 75 . 2.17)
Kyy=—FKy =—ilL wht;re L=._"_(l_“‘él_‘1’1

When collisions are taken into account, it can be proved
after some work that we have now the following relations:

Do tpg = BE—ot)—r(F—wn} =<,
where C' = BB — ) —r(BP—w,2). (2.18)
Agy — AiAn _ B(B—o?) {rB+ w,*—B%
n ] C
Dsstz—
Ags — DAz _ B(BP—0?) (rB+w,2—F?)
22 l _ C/
Autgg
o { (2.19)
e Dl _ BB o) (osatio(Br)
n ] C
A:m'l’m |
o Db _ BB~ fog0,io,(B-1)
1 1 C
Autgg

It is easy to see that the relations (2.15) are deducible’

from (2.19) when collisions are neglected, i.e. f=1.
We can now write out values of K’s from the above

relations. We have
Ky=1—r BB

-

CI
K1 - Bt

. S (2.20)
K, _f{wmwu‘{"wz(ﬁ_r)}
) 12 — Cu

K, = {wau“’v 3wz(18_r)}

Considerable s1mphﬁcat10n is introduced by putting
py=w,=0. We have now

Ky=1—r B0l (=Bt brB— )

Kp=1—r Bc_'ﬁ  (2.21)
—Kp=Ky =iL,
where L=—r(8—r)w,/C".

When B=1 (no collision), these cxpressums reduce to
2. 17‘

J

§ 3. SorLutioN OF THE FUNDAMENTAL EQUATIONS

The rigorous solution of the fundamental equations
4w Ne?
m
is not a constant, but varies with height. Let us first treat

Po® as a constant, and see what result is obtained.

presents great difficulty, since the quantity p 2 =

Let us put

(E,, E,, H,, H)=(4,, B,, Gy, Dy) ei$ 3.1)

where ¢ = p (tZF ’%-Z) ; the minus sign holds for the out-

going wave, the plus sign for the reflected wave. ‘y’ is
the refractive index, which we have to find out. When
we substitute (3.1) in (2.14) for the outgoing wave, we
have the following relation amongst the constants 4,
B, C, D
pd;=D,, pB;=—C, }
pCy=—iLA,—K,,B,, uD;=K;A,—iLB, |

From these equations, or directly from (2.14), we obtain

(3.2)

(W®—Ky)A4,+iLB, =0 } (3.3)

—iLA;+ (u?— Ky) B,=0 '
or for the magnetic vectors

(’LS-KII)D1+iLCI=O } (3 3r)

—iLD, +(p?—K,,)C, =0 )

i.e. p? is given by the roots of the quadratic equation
(2 — K1) (p2—Kyp) —L2=0.
Let us put

(3.4)
Kll - KZE —
oL~

Then it can be easily shown after a little work that the
two values of p are given by

mi=Ky—Lf (1—vV1+1[f?) =K11-LP1} (3.5)
=K~ If (VTP =Ku—Lp, |

where
=fA=VIH, pp=f1+VIFIA.  (3.6)
py and p, are the roots of the equation,
K, —K,
pz—- —'LL—lz P — l = 0.
From equations (3.3) and (3.5) we have
111 —_ p2—Ky, = %
4, L T "
or B]_:' —iPA:[: Cl=ipl"'A1s 'D1=P'A1'
Hence we have from (3.1),
E,=A, cos ¢, E,=4;p sin ¢
Hom i sin $ Hyodycos g |+ - GD)
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These equations show that the two waves are elliptically
polarized. We have

Ep+E _ 4p

. P (3.8)

H_: + H2 = p242

The ratio of the axes of the ellipses are—

(a) for the electric vector x-axis : y-axis=1:p
(b) for the magnetic vector x-axis : y-axis =p : 1.

The sense of rotation is given by equations (3.7) and
the sign of p can be taken only after we have discussed
the values of p, and p,.

Let us now find out the special characteristics of the
two waves. It is necessary now that the signs be properly
taken.

In the northern hemisphere, the northseeking (positive)
magnetic pole points downwards as shown in the figure.
Let ‘/’ denote the absolute value of the magnetic field.
Then if ‘8’ be the dip-angle, we have

h,=h cos 8, h, = — hsin 8.

eh .. . . .
Now mep = @ is itself negative, because ‘¢’ is negative.

AZ

X < T

Fig. 1
We have therefore
w, = — w cos 8, w, = w sin 3,
here w is the quantity ¢h
where w i — |.

In the southern hemisphere, the dip is upwards for the
positive pole, hence we have simply to substitute (—3&)
for 8 in the above expression. With the notation used
here it is easy to see that

Ky = (1—r) (10—7'—~ooz)= t(t-léw’)

, t=r—1

I = r(l—r) w, _ 11 +t)cw sin & .(3.9)
_Kzz w 00828
f= = 2¢sin 5

We have now
p*=Ky—Lp, =Ky —~Lf (1-VI+1[f?)

s T e
Gur=t(eot) — L oreos1— /LSRR |

Cu=t(t+ w?) —(l—;_iZw”coszs {1 + \/ l—;,_tsﬂ’c—s;:i?

The expressions for p,2, u,? are independent of the sign
of ‘6’ and hence hold for both hemispheres. We further
observe that

(@) p2=0 when t=0.
Hence p, represents the ‘conventional ordinary wave, for
t=0 is equivalent to the condition  p 2= (3.11)
() To prove that u,2=0 when 2=c2,
In this case, we have
2sin? §

J‘ ot 5

. 14/ TH1]f2=2 sec?s, and
Clu?=t(t+w?) — (1+¢t) w?
=t —w?
=0.
This condition gives us that p,=0 when = {w,

442 sm )
w’ costd

=1+

or }’;g = if; or po? = p* & phy (3.12)

These are the conditions of reflection for the extraordinary
wave. p, therefore represents the extraordinary wave.
Limiting cases:—
(1) When =0 (Magnetic Equator—Transverse Case).
We can show from (3.10) that
12— 3
t+ o’
The (p,%, 1—r) curve is the straight line representing the
ordinary wave in Mitra’s Report (1935). The .2, 7 curve

resolves into two curves on either side of the (g2, 1—r)
line.

(2) When & = +

pmi=—t=1—r p?=—

g (Magnetic Poles—Longitudinal

A case).

Now cos 8=0, sin =11, and we easily see from (3.10)
that

a2 _ t+ w _w—t
Py T o1 po® l+w
_l—r—e wtl—r
T l—w? = Tw1
, .
—l_l—w =1- l+w

So the (% 1) (pg® 1) curves reduce to straight lines, which
are reproduced in Mitra’s Report, p. 142.
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§ 4. PoLARIZATION

Southern hemisphere, now ‘&
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i

must

be changed to

. . L. . ‘—8; we have then
As mentioned in §3, the polarization factors are given by
TT7773 2§ in2 §
p=fI1 —V1+1/f3, P2=f{1+\/1+1/f2]: (4.1) py =28 2 1—\/1 4 Asm®o ) (4.4)
w? cosz 5 2sin 8 w? cos? &
since f = 5—— Srsn S andt=r—1, r——,fvamcsw1ththe
height of the point at which’ the wave is being considered, For the x-wave.
¢ varies from —1 at the ’gro‘und to zero at r=1. We need (b) Northern hemisphere
consider only the polarization of the-ground wave. We
have then __wcos™ [1 \/ 4 sin®5 :' .. 4.5
= —1, P="gsms 1T + 2 cos*S (+3)
w cos? & Southern hemisphere
f= Ssms . (4.2) o5 S
cos sin
—p o1 IR L e
For the o-wave. “2sm s ”* cosd
(2) Northern hemisphere In the table given below, we have calculated values
__ wcosd 1— \/ 11 4 sin? 8 (4.3) of p;, p; for a number of selected stations, for A=100
Pr= 2 sin & w?cost 3 | ’ meters. They are also given under fig. 2.
Tasre 1
eh r cos®d Ordinary Extra- Re-
Place 8 k r= : = — ' ordinary marks
mep 2 sin 8 pe
N. Pole 90° 1 —1
Lerwick 72° 42’ -4884 -4509 —-0208 9794 —1-0210
Slough 66° 54’ 4702 4419 —-0370 -9633 —1-0373
Allahabad 46° -5182 -487 —-1653 -8487 — 1-1793
Bombay 25° 30’ 4135 3710 —-3613 -7017 —1-4213
Huancayo 2° % -2963 -2693 —3-757 129 —7.643
North of Equator .. 0 —cc 0 —
South of Equator .. 0 +oc 0 4o
La Quiaca —12° 21 2684 -2523 -5631 —-5849 1-711
Pilar —25° 55’ +2732 -2576 -2387 —-7896 1-267 i
Batavia —32° 26’ +4369 4121 +2752 —-7619 1312
Watheroo —64° 197 2757 259 0271 —-9732 1-0274
Melbourne .. —-9569 1:0451
S. Pole —90° -1 1
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EXPERIMENTAL CONFIRMATION

These results have been experimentally confirmed.
.Berkner. states that at Huancayo: The ordinary ray is

. 0/ 15

2

18|

Fig. 2

269

polarized with its electric vector along the magnetic
north-south. Table (1) shows that :

E -axis: E -axis=]: 129

i.e. the electric vector is mainly along the x-axis, i.e.
magnetic north-south.

The extraordinary ray is polarized with its electric
vector along the magnetic east-west. Table (1) shows
that

E, -axis: E,-axis=1: 7-643.

The variation of polarization for the o- and x-waves
with latitude are shown in fig. 2.

CONCLUSION

It is shown that if the complex refractive index be
regarded as constant we get the same conditions for re-
flection and polarization of the radio-waves for vertical
propagation as was obtained by Appleton. But the refrac-
tive indices vary with height, hence the treatment given
here should be replaced by a wave-treatment. A simple

* case of wave-treatment has already been published in
paper 2.
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1. INTRODUCTION

There are at present two works attempting a theoretical
explanation of the ionization of the Upper Atmosphere.
First, the work of A. Pannekoek (1926), which is thermo-
dynamical, and is based upon Saha’s theory of thermal
ionization of atoms as extended by Milne (1924) and
Woltjer (1925) to material systems traversed by radiation
from an external body at a higher temperature. The second
method is that of S. Chapman (1931 4, b) who considers

the ionization produced by the absorption of a mono-
chromatic beam of light in an atmosphere in which the
density is assumed to vary exponentially. Prof. Chapman
in a Bakerian lecture in 1931 gave accounts of both theories
side by side, but he does not appear to have tried to
demonstrate the connection between the two methods of
calculating the idnization of the upper atmosphere. It
will be shown presently that the two theories are not



