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At the present time a number of new methods are
being developed in statistical mechanics, and it is
difficult to see the connexion amongst them. In this essay
an attempt is made to review these methods and supply
the link amongst the different theories.

Almost all the old (Planck) and new methods (Bose-
Einstein (), Fermi-Dirac®) start with Boltzmann’s theorem
S=k log W,

and with Planck’s definition of W, viz.:—
W =Thermodynamical Probability.

There is an alternative function G due to Boltzmann ®
and Gibbs® which may be described as the total phase
volume described by a thermodynamical system. Ehrenfest
and Trkal® treat problems of chemical equilibrium etc.
with the aid of this function (they called it {y}), and find
their method superior to Planck’s. There is a certain
amount of ambiguity in Planck’s definition of W; according
to him W is a whole number, but Ehrenfest and Trkal

have shown that Planck’s expression for W has to be ,

divided by N ! to get the correct expression for S. The
need for this operation is not clear. Planck ® has apparently
admitted the soundness of this criticism, and in a recent
paper puts a new interpretation on W. He defines W as the
maximum number of probable states which can give rise to
the total energy E. Planck shows that, with this definition,
G
W= TNT - . . . (D

The same conclusion has been reached independently and
simultaneously by Saha and Sur‘” from different concep-
tions. They emphasize the necessity for laying down a unit of
probability. At absolute zero S=0 and W=1, and the
total phase-volume described=A*"N! in the simplest case
(i.e., a perfect monatomic gas). Denoting this by G, and
the corresponding probability by unity, the mathematical
value of probability at any temperature

G G
W= G, FN!

The conceptions of Planck and Saha and Sur, though
apparently different, are in essence identical.

We shall therefore start with the theorem (1) and calcu-
late W, introducing (1) classical conceptions, (2) the Fermi-
Dirac condition, (3) the Bose-Einstein condition.

* Communicated by the Authors,

Let us suppose the assembly to be distributed in equi-
energy layers with the energy-interval (e,,e,|-de,) for
each particle, and let N;, be the number of particles in
this interval. The phase-volume occupied by each particle

8,=2aV(2m)32 ¢ 2(e,. . . . (@)
Then, according to Ehrenfest and Trkal,
N!

G= 'ﬁ—m]‘zgsﬂ' . . . (3)

This theorem has been given by Ehrenfest and Trkal
without proof, though to many it may not be so self-evident.
We are therefore supplying a proof. Let G, denote the
phase-space described by N-particles, and G,_, the phase-
space described by N—1-particles, the remaining varticle
being assigned to the region (dx dy dz dp,, dp, dp,). We have

3N 3N
G V¥(2zm) 2E 2
N= 3N A (3[)
riz+y) - o
Now we have®
Gy, dw
G =4 - . NG

where dw is the probability that the particle is to be found
in the phase-volume considered. We have therefore

_NS
d =N
and dr the phase-volume of the particle under question=g,.
Thus

& -
GN=GN—I'—-_'-
(N,/N)
Then by successive application of the same theorem
- AR
GN—GN—N, (N Ns) s
and finally, taking all the energy-layers,
Ny ™
_ wg f 2N
Gu_ggs ¢ (Ns>
N! N5 . "
= ITN:T{Tg s . . . . (3)
We have thus reduced the calculation of the phase-
volume from the 6N dimensional space to one of 6
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dimensions. We shall now show that the classical expression
for entropy is easily obtained from this value of G. We have

W= ()™

ER =N, s
~ s
: Let%; be denoted by a,;
then S=klogW
=k {ZN,og a,—2XN,(log N,—1)}
8 8
—kZN, log 1%1+KN. N
Now E=XN,e,
’ (3)
N=2N,

Hence, applying the variation-principle,
8S= X'3N,(loga,—log N;)
$

SN=26N,
s ©
SE=2X8N,e,
8
Therefore log a—log N+Xe,+p=0 J
or N,=aaefs . . . . (D
It can now be easily proved in the usual way that
_ 1_V 3/2
ﬁ— _ﬁ" and oz —N—,?L%(Qﬂka) / . . (8)

and substituting these values, we can easily show that S gets
the classical value, viz.,
\% ;

Nk log {m3(27rka)3f’ze5“} @

Now we shall show how the Fermi-Dirac expression can
be obtained from the definition of W.

The phase-volume of the assembly

N'! N
G=nN e

8
has been calculated on the supposition that the phase-
volume occupied by each individual particle is infinitely
small compared with the total phase-volume at its disposal,
viz., g, Let us now give up this assumption, and suppose
it occupies a finite phase-volume “a”. Then

N! N 3
G=pN 8(&—a). - (&—N—la). . (10)

The argument is just the same as that which we introduce
in the calculation of the van der Waals’s correction “b”
from probability consideration. When each particle occupies
negligible volume we have

Waoc VT
but when the volume “8”’ cannot be neglected,

N
WOCHI(V—F],B).
y=

In the above method we have introduced the phase-

volume g, instead of the space-volume V, and calculated
G,. Now
W= G

KNI

gs
. <ﬁ—Ns—la)

1
=N (e - (@—e N2,
where €= }%
1
=H__as_'____ . . . . (11)

s Nyl(a, — eNg) V'
If we put e=1, we get the Fermi-Dirac expression for W;
when e=—1 we have

8+ N,—1!,
WeIPsy (12)

which is the Bose-Einstein expression for W.

. It may be mentioned here that the above discussion was

originally inspired by an article of L. Brillouin (4nn. d. Phys.
vii. 1927). But in spite of apparent resemblance, the
method given here differs in essential points from Brillouin’s.
Firstly, Brillouin follows Bose-Einstein and Fermi-Dirac
closely in calculating probability by making use of a, (which
is Brillouin’s g,) as the number of degrees of freedom which
a particle can have when its energy lies between ¢, and
¢,~de,. It may be easily shown that though we obtain the
various values of N, by subjecting Brillouin’s expressions
for W to the usual variational process in the three different
cases (equations 21), they do not give us absolute values of
entropy unless some assumption is made regarding the value
of A or G in equation (21) of Brillouin. We have to make

—S =N in order to get the correct value of S. The justification

for this assumption is not clear, and Brillouin has made no
attempt to calculate the absolute value of S. He devotes a
good deal of discussion over the origin of the permutability

N
IN,!

factors > which is quite unnecessary. The factor comes
s

out automatically when we calculate the total phase-
volume of the ensemble not in 6N dimensions, but in 6
dimensions.

The above method has therefore the merit of giving
a deduction for the absolute value of S on the three views
from a unitary standpoint. -The classical statistics and
Fermi-statistics are easily understandable, and probably in
the case of Fermi-Dirac statistics it affords a clearer physical
view of the case than Fermi’s original method. There may
be many who shake with us the difficulty in understanding
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the extension of the Pauli Principle, which has been shown
to be the guiding principle in the formation of atoms out
of protons and electrons, to the case of an ensemble of N
_ independent particles possessing only translatory motion
(e. g, Hall, Proc. Nat. Acad. Sci. 1928). The deduction
given here follows exactly the same lines as the deduction of
" the van der Waals’s correction for finite volumes, and is
 therefore physically more comprehensible.
- Of greater difficulty is the comprehension of the Bose-
-Einstein statistics. Here “a”, the phase-volume of any
particle, has to be put negative(—#A3). These statistics have
therefore to be definitely ruled out in the case of material
particles. But as it is found to be correct in the statistics
of light-particles, we have to assume that when a photon
enters a phase-space, the space expands, since the total

phase-volume is increased by the phase-volume -of the
photon. A discussion will be found in Brillouin’s paper
above referred to.
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48. COLOURS OF INORGANIC SALT
| (Nature, 125, 163, 1930)

No satisfactory explanation of the colours of inorganic
salts in the vapour state, in solution, or in crystalline form
has yet been put forward, excepting certain suggestions by
Fajans (“Handbuch der Physik”, Bd. 24, p. 564), that
the colours are due to the deformation of the cation pro-
duced by surrounding anions and molecular complexes.

The ideas of Fajans were rather vague, but the time has now *

come to put forward a more precise hypothesis. It is well
known that salts like NaCl, CaCl,, AlC; in which the elec-
trons of the cation form closed shells (%), are colourless or
white. Herzfeld found from a study of dispersion of NaCl
that there are three ultra-violet absorption bands, one at
A340 which was ascribed to Na+, another at about 1500,
which was ascribed to Cl--ion. This last one has been
experimentally obtained by Pfund (Phys. Rev., vol. 32) by
the Reststrahlen method. The wave-length /\340 ascribed to
Na+ agrees remarkably well with the resonance line of
Nat identified by K. Majumdar (Ind. Jour. Phys., 1927)
and Bowen, though definite assignment of values of the
absorption wave-length from dispersion data in this region
is subject to certain uncertainties. »
Colours are almost entirely shown by the compounds
of the transitional group of elements (the first group con-
sisting of elements from scandium to copper). Let us fix
our attention on the first group alone, as the same arguments
will apply to other groups. The colours are somewhat
modified by the anion, or the state of aggregation (solution
or crystal), but intrinsically it is due to the cation. Taking
a compound like CrCl;, we can say that it consists of a
Cr+++-ion, surrounded by three Cl--ions. The absorption
of light in the visible region is due entirely to the outer

electrons of the Cr+++-jon. Let us see how this absorption
takes place.

The outermost shell of the Cr+++ion (and generally
of all ions of transitional elements) consists of a number
of electrons in the d-shell. In Cr+++, the number is 3.
The multiplicity of the most stable combination state
is obtained by adding up the multiplicity vector r=}% for
all the electrons, and the next metastable states are obtained
by reversing the vector r for one of the electrons. In d3,
the states are respectively X and 27, where X and ¥ are
further to be formulated. This is obtained by considering
the /-coupling according to Pauli’s principle, and in the
case of Cr+++, X=F and P in 4X, and Y=H, G, D in %Y.
The average difference in energy between the terms
obtained in this way, that is, by having the rotating
quantum number all in one direction, and then rcversmg
only one, is about Car=20,000, the value increasing with
the number of net charges in the nucleus, as shown by
the spectroscopic data of Russell, Gibbs and White, Lang,
Shenstone, etc. (see various papers in the Physical Review).

It is therefore evident that the absorption of light in
the visible region is due to some of the «-electrons chang-
ing their r-vector from % to —}. This type of transition
is possible only in transitional groups, and though usually
forbidden they become very prominent in all molecular
formations. We cannot, of course, expect that the values:
of energy difference which we obtain from spectroscopic
studies will continue to hold good in molecules or complex
formation, but they will remain of the same order of
magnitude. An indefiniteness will be introduced by the
modification of the rules of [-coupling (vide Stoner’s



