LECTURE - 3

Breakup reactions: $a + A \rightarrow b + c + A$

Elastic breakup (A remains in the g.s.)

Inelastic breakup (c + A can go to c + C)

Two modes of breakup

Mechanism of breakup reactions (Elastic Breakup)

Spectator participant picture

 $T_{fi}^{(+)}(DWBA) = \langle \chi^{(-)}(q_c, r_{cA})\chi^{(-)}(q_b, r_{bA})|V_{bc}|\chi^{(+)}(q_a, r_{aA})\phi_a(r_bc) \rangle$

Theory of Inelastic Breakup Reactions

We want to describe the reaction $a + A \rightarrow b + c + C$

 $T^{(+)}(inel) = \langle \chi^{(-)}(k_{bB}) \psi^{(-)}(k_{Ax}) \phi_b | V_x | \chi^{(+)}(k_{aA}) \phi_A \phi_a \rangle$

Surface approximation

$$\int d\xi_A \psi^{(-)*}{}_B \phi_A = 4\pi \sum_{\lambda m} f_\lambda (r_{xA}) Y_{\lambda m} (\Omega_{xA}) Y^*_{\lambda m} (k_{cC})$$

TROJAN-HORSE METHOD

G. Baur, F. Roesel, D. Trautmann, R. Shyam, Phys. Rep. 111 (1984) 333 G. Baur, Phys. Lett. B 178 (1986) 135, S. Typel, G. Baur, Ann. Phys. 305 (2003) 228

For any charged particle induced reaction at astrophysical energies

 $x + A \rightarrow c + C$

 $a (b+x) + A \rightarrow b + c + C$

Hindered at lower energies

Can proceed as *a* can have larger energy.

x is brought in the reaction zone of target A hidden inside the projectile.

 $d^{3}\sigma/d\Omega_{b}d\Omega_{c}dE_{b} = \rho(\text{phase space}) |\Sigma_{\lambda m} T_{\lambda m}(k_{a},k_{b},k_{x}) S_{\lambda c} Y_{\lambda m}(\Omega_{c})|^{2}$

 $T_{\lambda m}(k_{a},k_{b},k_{x}) = \langle \chi^{(-)}(k_{b}) Y_{\lambda m}(k_{x})f_{\lambda} | V_{bx} | \chi^{(+)}(k_{a})\phi_{bx} \rangle$

Advantages

A - a energy can be well above the Coulomb barrier Cross sections are larger Low A - x energies are accessible, $E_a = E_b + E_x - Q$

BUT

Calculation of $T_{\lambda m}(k_a,k_b,k_x)$ must be done as accurately as possible

The Trojan - Horse Method

Example

3He

180

d

15N

p + ¹⁸O $\rightarrow \alpha$ + ¹⁵N CNO cycle Gammow peak ; 30 keV We study this reaction by ³He + ¹⁸O $\rightarrow d + \alpha + {}^{15}N$

The information about the cross section

 $\sigma(p + {}^{18}O \rightarrow \alpha + {}^{15}N) = (\pi/k_x^2) \Sigma(2\lambda + 1) |S_{\lambda c}|^2$

from the experimentally determined $d^3\sigma / d\Omega_d d\Omega_\alpha dE_d$

 $d^{3}\sigma/d\Omega_{d} d\Omega_{\alpha} dE_{d} = (phase space) |\Sigma_{\lambda m} T_{\lambda m} S_{\lambda c} Y_{\lambda m} (\Omega_{\alpha})|^{2}$

DWBA THEORY OF INELASTIC BREAKUP REACTIONS

Applications of Trojan-Horse Method ^{2}H ($^{6}Li, \alpha$) ^{4}He Big Bang Nucleosynthesis

⁶Li (⁶Li, $\alpha \alpha$) ⁴He E (beam)= 6 MeV

Catania/Zagreb experiment, Spitaleri et al., PRC 63 (2001) 055801

Direct (corrected for electron screening) and Trojan-horse methods gave similar astrophysical S-factor

Other applications of Trojan-Horse Method

Reaction	Trojan-Horse Reaction	Eproj (MeV)	Ref.
¹ H (⁷ Li,α) ⁴ He	$^{2}H(^{7}Li, \alpha \alpha) n$	<i>19-21</i>	Ap. J 562 (2001)1076
⁶ Li (p, ³ He) ⁴ He	² H (⁶ Li, ³ Heα) n	25.0	preprint

BUT BEWARE

Calculations as yet use simplified approximation of PW. Absolute cross sections are unreliable TH results are normalized to the directly measured cross sections

More work on theory side is required: (include distorted waves in the description)

THE ANC METHOD

Direct capture reaction $b + c \rightarrow a + \gamma$

$$\sigma \propto |M|^2$$

 $M = \langle \varphi_a(\xi_b, \xi_b, r_b) / \mathcal{O}(r_b) / \varphi_b(\xi_b) \varphi_c(\xi_c) \psi_i(r_b) \rangle$

$$I_{bc}^{A}(r_{bc}) = \langle \varphi_{a}(\xi_{b}\xi_{b}r_{bc}) | \varphi_{b}(\xi_{b})\varphi_{c}(\xi_{c}) \rangle$$
$$= C_{\lambda j} f_{\lambda j}(r_{bc}) Y_{\lambda m} (\Omega)$$

 $r_{bc}?R_{N,j}f_{\lambda j}(r_{bc}) = C_{\lambda j}W_{\lambda+1/2}(2kr_{bc})/r_{bc}$

At low energies

 $\psi_i(r_{bc}) \rightarrow$ regular Coulomb wave functions.

 $O(r_{\rm br}) \rightarrow {\rm Electromagnetic}$ operator

So if the reaction is peripheral then the

$$|M|^2 \propto C_{\lambda j}^2$$

Capture amplitude is completely determined by $C_{\lambda i}$

Methods for the determination of ANC

• Single particle potential model for a (b+c)

Assume b+c are bound together by a potential having a Woods-Saxon form. Its depth is adjusted to the b + c separation energy.

The corresponding single particle wave function is $u_{\lambda i}$.

$$f(r_{bc}) = S_{\lambda j}^{1/2} u_{\lambda j}(r_{bc}) = \frac{S_{\lambda j}^{1/2} b_{\lambda j} W_{\lambda + 1/2}}{\downarrow} (2kr_{bc})$$

Spectroscopic factor

 $C_{\lambda i}$

From the transfer reaction b(A,B)a

$d\sigma/d\Omega = |\langle \chi_{a-B} \phi_B \phi_a | V_{B-c} | \phi_A \phi_b \chi_{b-A} \rangle|^2$

$$= |\langle \chi_{a-B} I_{ba} \phi_B | V_{B-c} | \phi_A \chi_{b-A} \rangle|^2 \rightarrow \text{Second vertex}$$

 $|I_{ba}|^2 = S_{\lambda j} |u_{\lambda j}|^2$ $= S_{\lambda j} b_{\lambda j}^2 |W_{\lambda+1/2}|^2$

Single particle potential model If the transfer is peripheral **ANC from Transfer Reactions**

Conditions to be satisfied

- Transfer reaction must be peripheral
- Single step transfer mechanism must dominate
- Compound nuclear contribution should be negligible
- Optical model potentials must be known with great accuracy
- Second vertex should be known accurately

Study of the $p + {}^7Be \rightarrow {}^8B + \gamma$ reaction

Whittaker function describes the asymptotics of the ⁸B well.

S-factor of $p + {}^7Be \rightarrow {}^8B + \gamma$ reaction via study of 7Be (d,n) 8B

Validity of the peripheral approximation

Validity of the peripheral approximation

Validity of the peripheral approximation

 $E_{cm} = 38.9 \text{ MeV}$

Effect of different parameters for the bound state of ⁸B ⁷Be (d,n) ⁸B $E_{cm} = 5.8 \text{ MeV}$ **10**[∠] dơ/dΩ (mb/sr) 10¹ □ Kim + Tombrello Robertson Barker Esbensen 10⁰ 0 20 40 60 (degrees) θ

Effect of different Optical model parameters for d + ⁷**Be** ⁷Be (d,n) ⁸B $d + {}^7Be$ **Ecm = 5.8 MeV 10**¹ 10² dơ/dΩ (mb/sr) G σ/σ_{R} 10⁰ Ludecke surface Ludecke volume Ludecke surface **Bingham surface** Ludecke volume **Bingham volume Bingham surface** Liu (set 1) **Bingham volume** Liu (set1) a) b) 10[°] 10⁻¹ 20 40 60 20 40 60 0 0 θ (degrees) θ (degrees)

S-factor of $p + {}^7Be \rightarrow {}^8B + \gamma$ reaction via study of ${}^7Be (d,n) {}^8B$ at Ecm = 4.4 MeV at IUAC (NSC), New Delhi

Values from Indirect and Direct methods are converging finally !!

Studies of $p + {}^7Be \rightarrow {}^8B + \gamma$ reaction from transfer reactions on heavier targets,

Texas A & M group, Tribble et al. PRC 60 (1999), PRL 82 (1999)

¹⁰B(⁷Be,⁸B)⁹Be, ¹⁴N(⁷Be,⁸B)¹³C transfer reactions with ⁷Be beam

Elastic scattering cross section for the ¹⁰B + ⁷Be and ¹⁴N + ⁷Be were also measured

Peripheral nature of transfer process confirmed, but final channel OMP are uncertain

ANC approximation was used for both (7Be,8B) and (A,B) vertices.

 $S_{17} = 16.6 \pm 1.9 \ eV b$, $S_{17} = 17.8 \pm 2.8 \ eV b$

ANC from Nuclear Structure Calculations

$$I_{ba}[r] = \int d\xi \ \phi_b^*(\xi,r) \ \phi_a(\xi) \implies f_{\lambda j} Y_{\lambda m}(\Omega_r)$$

Calculate ϕ_b and ϕ_a within some nuclear structure model Mean field model like HF

> **Translational Invariance Correct asymptotic form**

Calculate σ (E) and S_{pA}

 $I_{ba}[r] = C_{\lambda j} W_{\lambda + 1/2} (2kr)/r \qquad \Rightarrow S_{pA} = K \sum C_{\lambda j}^{2}$

S₁₇ = 22.0 ev b, Chandel, Dhiman, Shyam, PRC 68 (2003) 054320