LECTURE - 3

Breakup reactions: $\quad \mathbf{a}+\mathbf{A} \rightarrow \mathbf{b}+\mathbf{c}+\mathbf{A}$

Mechanism of breakup reactions (Elastic Breakup)

$\mathbf{T}_{\mathrm{fi}}{ }^{(+)}($DWBA $)=<\chi^{(-)}\left(\mathbf{q}_{\mathbf{c}}, \mathbf{r}_{\mathrm{cA}}\right) \chi^{(-)}\left(\mathbf{q}_{\mathrm{b}}, \mathbf{r}_{\mathrm{bA}}\right)\left|\mathbf{V}_{\mathrm{bc}}\right| \chi^{(+)}\left(\mathbf{q}_{\mathrm{a}}, \mathbf{r}_{\mathrm{a} A}\right) \phi_{\mathrm{a}}\left(\mathbf{r}_{\mathrm{b}} \mathbf{c}\right)>$

Theory of Inelastic Breakup Reactions

We want to describe the reaction $\mathbf{a}+\mathbf{A} \rightarrow \mathbf{b}+\mathbf{c}+\mathbf{C}$

$T^{(+)}($inel $)=<\chi^{(-)}\left(k_{b B}\right) \psi^{(-)}\left(k_{A x}\right) \phi_{b}\left|V_{x}\right| \chi^{(+)}\left(k_{a A}\right) \phi_{A} \phi_{a}>$
Surface approximation

$$
\int d \xi_{A} \psi^{(-) *}{ }_{B} \phi_{A}=4 \pi \Sigma_{\lambda m} f_{\lambda} \underbrace{\left(r_{x A}\right)} \boldsymbol{Y}_{\lambda m}\left(\Omega_{x A}\right) \boldsymbol{Y}_{\lambda m}^{*}\left(\boldsymbol{k}_{c C}\right)
$$

TROJAN-HORSE METHOD

G. Baur, F. Roesel, D. Trautmann, R. Shyam, Phys. Rep. 111 (1984) 333
G. Baur, Phys. Lett. B 178 (1986) 135, S. Typel, G. Baur, Ann. Phys. 305 (2003) 228

For any charged particle induced reaction at astrophysical energies

$$
x+A \rightarrow c+C
$$

Hindered at lower energies

$$
a(b+x)+A \rightarrow b+c+C
$$

Can proceed as a can have larger energy.
$d^{3} \sigma / d \Omega_{b} d \Omega_{c} d E_{b}=\rho($ phase space $) \mid \Sigma_{\lambda m} T_{\lambda m}\left(k_{a}, \boldsymbol{k}_{b}, \boldsymbol{k}_{x}\right) \boldsymbol{S}_{\lambda c} \boldsymbol{Y}_{\lambda m}\left(\left.\Omega_{d}\right|^{2}\right.$
$T_{\lambda m}\left(\boldsymbol{k}_{a}, \boldsymbol{k}_{b}, \boldsymbol{k}_{x}\right)=<\chi^{(-)}\left(\boldsymbol{k}_{b}\right) \boldsymbol{Y}_{\lambda m}\left(\boldsymbol{k}_{x}\right) f_{\lambda}\left|V_{b x}\right| \chi^{(+)}\left(\boldsymbol{k}_{a}\right) \phi_{b x}>$

Advantages

A - a energy can be well above the Coulomb barrier Cross sections are larger Low $A-x$ energies are accessible, $E_{a}=E_{b}+E_{x}-Q$

BUT
Calculation of $T_{\lambda m}\left(k_{a}, k_{b}, k_{x}\right)$ must be done as accurately as possible

The Trojan - Horse Method

Example

$\mathrm{p}+{ }^{18} \mathrm{O} \rightarrow \alpha+{ }^{15} \mathrm{~N}$ CNO cycle Gammow peak; 30 keV
We study this reaction by ${ }^{3} \mathrm{He}+{ }^{18} \mathrm{O} \rightarrow d+\alpha+{ }^{15} \mathrm{~N}$

The information about the cross section
$\sigma\left(p+{ }^{18} O \rightarrow \alpha+{ }^{15} N\right)=\left(\pi / k_{x}{ }^{2}\right) \Sigma(2 \lambda+1)\left|S_{\lambda c}\right|^{2}$
from the experimentally determined $d^{3} \sigma / d \Omega_{d} d \Omega_{\alpha} d E_{d}$

$$
d^{3} \sigma / d \Omega_{d} d \Omega_{\alpha} d E_{d}=(\text { phase space }) \mid \Sigma_{\lambda m} T_{\lambda_{m}} S_{\lambda c} Y_{\lambda m}\left(\left.\Omega_{\alpha}\right|^{2}\right.
$$

DWBA THEORY OF INELASTIC BREAKUP REACTIONS

Applications of Trojan-Horse Method

${ }^{2} \boldsymbol{H}\left({ }^{6} \mathrm{Li}, \alpha\right){ }^{4} \mathrm{He}$
Big Bang Nucleosynthesis

${ }^{6} \boldsymbol{L i}\left({ }^{6} \mathbf{L i}, \alpha \alpha\right){ }^{4} \mathbf{H e}$
E (beam) $=\mathbf{6 ~ M e V}$
Catania/Zagreb experiment, Spitaleri et al., PRC 63 (2001) 055801
Direct (corrected for electron screening) and Trojan-horse methods gave similar astrophysical S-factor

Other applications of Trojan-Horse Method

Reaction	Trojan-Horse Reaction	$\mathrm{E}_{\mathrm{proj}}(\mathrm{MeV})$	Ref.
${ }^{1} \mathrm{H}(\mathrm{CLi}, \alpha){ }^{4} \mathrm{He}$	${ }^{2} \mathrm{H}(\mathrm{CLi}, \alpha \alpha) \boldsymbol{n}$	$19-21$	Ap. J $562(2001) 1076$
${ }^{6} \mathrm{Li}\left(p,{ }^{3} \mathrm{He}\right){ }^{4} \mathrm{He}$	${ }^{2} \mathrm{H}\left({ }^{6} \mathrm{Li},{ }^{3} \mathrm{He} \alpha\right) \mathrm{n}$	25.0	preprint

BUT BEWARE
Calculations as yet use simplified approximation of PW.
Absolute cross sections are unreliable
TH results are normalized to the directly measured cross sections

More work on theory side is required: (include distorted waves in the description)

Direct capture reaction $\mathbf{b}+\mathbf{c} \rightarrow \mathbf{a}+\gamma$

$$
\sigma \propto|M|^{2}
$$

$$
M=\left\langle\varphi_{a}\left(\xi_{b} \xi_{b^{\prime}} r_{b c}\right)\right| O\left(r_{b c}\right)\left|\varphi_{b}\left(\xi_{b}\right) \varphi_{c}\left(\xi_{c}\right) \psi_{i}\left(r_{b c}\right)\right\rangle
$$

$$
I_{b c}^{A}\left(r_{b c}\right)=\left\langle\varphi_{a}\left(\xi_{b} \xi_{b} r_{b c}\right) \mid \varphi_{b}\left(\xi_{b}\right) \varphi_{c}\left(\xi_{c}\right)\right\rangle
$$

$$
=C_{\lambda j} f_{\lambda j}\left(r_{b c}\right) Y_{\lambda m}(\Omega)
$$

$$
r_{b c} ? R_{N}, f_{\lambda j}\left(r_{b c}\right)=C_{\lambda j} W_{\lambda+1 / 2}\left(2 k r_{b c}\right) / r_{b c}
$$

At low energies

$$
\begin{aligned}
& \psi_{i}\left(r_{b c}\right) \rightarrow \text { regular Coulomb wave functions. } \\
& O\left(r_{b c}\right) \rightarrow \text { Electromagnetic qperator }
\end{aligned}
$$

So if the reaction is peripheral then the

$$
|M|^{2} \propto C_{\lambda j}{ }^{2}
$$

Capture amplitude is completely determined by $\boldsymbol{C}_{\lambda j}$

Methods for the determination of ANC

- Single particle potential model for a (b+c)

Assume $b+c$ are bound together by a potential having a WoodsSaxon form. Its depth is adjusted to the $\mathbf{b}+\mathbf{c}$ separation energy.

The corresponding single particle wave function is $\boldsymbol{u}_{\lambda j}$.

$$
\begin{gathered}
f\left(r_{b c}\right)=S_{\lambda j}^{1 / 2} u_{\lambda j}\left(r_{b c}\right)=\frac{S_{\lambda j}^{1 / 2} b_{\lambda j} W_{\lambda+1 / 2}\left(2 k r_{b c}\right.}{\downarrow} .
\end{gathered}
$$

Spectroscopic factor $\quad C_{\lambda j}$

From the transfer reaction $b(A, B) a$

$$
\begin{aligned}
d \sigma / d \Omega & =\left|<\chi_{a-B} \phi_{B} \phi_{a}\right| V_{B-c}\left|\phi_{A} \phi_{b} \chi_{b-A}>\right|^{2} \\
& =\left|<\chi_{a-B} I_{b a} \phi_{B}\right| V_{B-c}\left|\phi_{A} \chi_{b-A}>\right|^{2}
\end{aligned}
$$

$$
\left|I_{b a}\right|^{2}=S_{\lambda j}\left|u_{\lambda j}\right|^{2}
$$

Single particle potential model

$$
=S_{\lambda j} b_{\lambda j}^{2}\left|W_{\lambda+1 / 2}\right|^{2}
$$

If the transfer is peripheral

ANC from Transfer Reactions

Conditions to be satisfied

- Transfer reaction must be peripheral
- Single step transfer mechanism must dominate
- Compound nuclear contribution should be negligible
- Optical model potentials must be known with great accuracy
- Second vertex should be known accurately

Study of the $\quad \mathbf{p}+{ }^{7} \mathbf{B e} \rightarrow{ }^{8} \mathbf{B}+\gamma \quad$ reaction

 Whittaker function describes the asymptotics of the ${ }^{8} B$ well.

S-factor of $\mathrm{p}+{ }^{7} \mathrm{Be} \rightarrow{ }^{8} \mathbf{B}+\gamma$ reaction via study of ${ }^{7} \mathrm{Be}(\mathrm{d}, \mathrm{n}){ }^{8} \mathbf{B}$

Validity of the peripheral approximation

Validity of the peripheral approximation

Validity of the peripheral approximation

Effect of different parameters for the bound state of ${ }^{8} \mathrm{~B}$
${ }^{7} \mathrm{Be}(\mathrm{d}, \mathrm{n}){ }^{8} \mathrm{~B} \quad \mathrm{Ecm}=\mathbf{5 . 8} \mathbf{~ M e V}$

Effect of different Optical model parameters for $\mathbf{d}+{ }^{7} \mathbf{B e}$

S-factor of $\mathbf{p}+{ }^{7} \mathrm{Be} \rightarrow{ }^{8} \mathbf{B}+\gamma$ reaction via study of ${ }^{7} \mathrm{Be}(\mathbf{d}, \mathbf{n})^{8} \mathbf{B}$ at $\mathrm{Ecm}=4.4 \mathrm{MeV}$ at IUAC (NSC), New Delhi

Values from Indirect and Direct methods are converging finally !!

Studies of $\mathbf{p}+{ }^{7} \mathbf{B e} \rightarrow{ }^{8} \mathbf{B}+\gamma$ reaction from transfer reactions on heavier targets,

Texas A \& M group, Tribble et al. PRC 60 (1999), PRL 82 (1999) ${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Be},{ }^{8} \mathrm{~B}\right){ }^{9} \mathrm{Be},{ }^{14} \mathrm{~N}\left({ }^{7} \mathrm{Be},{ }^{8} \mathrm{~B}\right){ }^{13} \mathrm{C}$ transfer reactions with ${ }^{7} \mathrm{Be}$ beam

Elastic scattering cross section for the ${ }^{10} \mathrm{~B}+{ }^{7} \mathrm{Be}$ and ${ }^{14} \mathrm{~N}+{ }^{7} \mathrm{Be}$ were also measured
Peripheral nature of transfer process confirmed, but final channel OMP are uncertain

ANC approximation was used for both $\left({ }^{7} \mathrm{Be},{ }^{8} \mathrm{~B}\right)$ and (A, B) vertices.

$$
S_{17}=16.6 \pm 1.9 \mathrm{eV} \mathrm{~b}, S_{17}=17.8 \pm 2.8 \mathrm{eV} \mathrm{~b}
$$

ANC from Nuclear Structure Calculations

$$
I_{b a}[r]=\int d \xi \phi_{b} *(\xi, r) \phi_{a}(\xi) \Rightarrow f_{\lambda j} \boldsymbol{I}_{\lambda_{m}}\left(\Omega_{r}\right)
$$

Calculate ϕ_{b} and ϕ_{a} within some nuclear structure model Mean field model like HF

Translational Invariance
Correct asymptotic form
Calculate $\sigma(E)$ and $S_{p A}$
$I_{b a}[r]=C_{\lambda j} W_{\lambda+1 / 2}(2 k r) / r \quad \Rightarrow S_{p A}=K \Sigma C_{\lambda j}{ }^{2}$

