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Education is what remains after you have
forgotten everything you have learned.
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Nuclear Astrophysics

The luminous structure of the Universe is largely given by the
properties of the nuclei inhabiting it. These provide the energy
source and thus the structure of stars and produce this way new
nuclei and elements.

Nuclear Physics explains the working of nuclei. Many properties of
nuclei and nuclear scattering are known from experiments with no
particular interest in astrophysical questions.

Nuclear Astrophysics is generally the nuclear physic dedicated to
questions arising directly from astrophysical problems.

However, the field is rather broad and only a few problems will
be discussed here. E.g. there will be no discussion of neutron
physics, e.g. capture cross sections, r-process or others.
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Overview of lectures

1. A little stellar astronomy

2. A bit more on scattering theory

3. 12C(a,y)'%0, some discussion, new results

4. YCa(a,y)*Ti

5. 7Be(p,y)8B experiment
6. 'Be(p,p)’Be and TACTIC

7. Radioactive beam experiments at TRIUMF
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A Star

After a long random
walk light is radiated
away.

e most of their

n a quasistatic

gfUilibrium between radiation
produced in nuclear burning and
gravity pulling against the
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Stars twinkle




The recirculation of matter

o M .

Nuclei are the DNA of the Universe.

Stan Woosley
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Classifying stars: The Hertzsprung-Russell Diagram

Stars can be classified according
to surface temperature and
luminosity.

Stellar evolution is directly
linked to microscopic,
nuclear physics.
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The microscopic world: particle scattering

Y =Ixnxc©,Q)xdQ

Beam: pariclesisec

4 e D 2y =0
dr 2 h

Partial wave decomposition ®
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What are Phaseshifts?

ﬁ\ Outgoing radial wave ikl"
D k- e
@) _ y(r)=e"" + f(Q)—

atter centre

r

Radially divergent outgoing wave

c ()= f(L) |2 Cross section—square of scattering amplitude

Partial wave
decomposition

f©)=2" f,P,(cosb)
/=0
1 ¢ 4t

f =Z(zz+1)e"5f sind, <«» o, :k—fz(zfﬂ)smz@

Wlth the phaseshlft 8 , Strongly decrez{szr(l)g potential, no Coulomb forces, no spins.
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Coulomb Potential

Infinite range: needs
special treatment.
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Sommerfeld parameter: n = 21%2€" _ () 157486 Z.Z, mlu]
hy E[MeV]
) £ Z,Z
Coulomb potential VC =1.11 A11/3 1+ 124;/3 [MCV]
"™ Coulomb scattering amplitude:
Jc®)= 1 —exp[-in ln(Sinz(lO ) +2iw, ]
2ksin*(=0) 2
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More solutions to the Coulomb problem

ds©.E) - 1| M G2 Ly oxpi2im nsin(Lo)]
oon o2 2 2 Phase shift
+ QL +DP exp(i[20, +8 (E))sind (E)[ analysis
/=0

. . . l
Spinless particles, with o, =Y arctan@), >0, ©,=0
m=1 m

Radial Schrodinger equation for Coulomb problem:

. nk 0/ +1
vk - (rz My, =0

Two solutions: F,(p,n)...,G,(p,n) regular and irregular Coulomb
functions, p=k7
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Derivation of the R-function

Spinless case, one channel, states in a square potential;
then set of eigenstates fulfilling the Schrodinger equation:

neody
iy drzx +V ()1, = E % E,

These can obey a boundary condition at any matching radius:

dy.,.
ar

+By, =0

An unbound particle scattering at the potential has to also fulfill the Schrodinger equation:
2 2

n d%

N 2
2m dr

January 06 Kolkata

+V(ry=E¢ E>O0



Derivation of the R-function

From completeness and orthonormality follows:

¢ :ZAxXx 4, :J.Oa x,odr
»

Multiplying the two Schrodinger equations with the opposite wavefunction
and subtraction as well as integration from 0 to a gives:

d’y, 2m r
j(x PR )r + 2 (E = E,)| b, r =0

Partial integratlon leads to:

d 2m
Lp oy 422 B E )4, =0

(%

Applying the boundary condition and resolving leads to:
¢(r)=G(r,a)ie'(a)+Bo(a)]
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Derivation of the R-function

With the Green’s function

G(r,a)— ZXX(’”)XX(Q) R=G(a,a)

Defining:
h2 y 2
2 _ x
—x, (@)= R=
' T %5 (@) ; E —E
The logarithmic derivative at a is then:
¢'(a) 1-BR
¢(a) R

At a the internal wavefunctions are matched to the external one:
v '(a) _9 (a) I'-U,0" 1-BR
y(@) o I-UO R
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Scattering Matrix

With defining the

scattering matrix U: \l] = [ — U O
I incoming wavefunction, O outgoing.
y L 1-L,R
" 0,1-L,R

In single channel R-matrix theory is then:

The rest Coulomb properties:
]ﬁ = (G£ —ZFL )e"”f . OZ = (Gg + l.Fvg)e_lwf

LEZSE—I_ZI)E with
p=—" S =P(F.F'+G,G,
F€2+G€2|a E_K(Ef—*_éé)
Shift function

Penetrability
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Generalize the scattering matrix

The scattering matrix can be generalized for particles
with spins and reactions with multiple channels, so that

for non elastic reactions 1s (generalization for elastic possible):

1.e., elements of the

T J 2
G , —_ — U (NN b <
oo 2 ZgJ | Udssaror | scattering matrix

With the following symbols: » are square roots of

a, o’ physical channel (p, a, others) ; k-wave number reduced cross

J total spins of (compound) states; U —scattering matrix sections for

s incoming channel spin individual quantum
numbers.

[ angular momentum

g, spin statistical factor
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What are Phaseshifts?

Then, more formally, phaseshifts are:

J . 2i((1)0d +6(;L]Sl)
Uocsl o()sl €

with ®y; being the Coulomb phase and

5&2; the nuclear phaseshift, usually a complex
number, real part elastic, imaginary part sum of all
inelastic channels..

As far as elastic scattering is concerned a
Coulomb term and a Coulomb-nuclear

interference term have to be added.
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Helium Burning

*  When hydrogen burning has stopped in the core it starts to contract slowly till helium
ignites. -> “Helium Burning”. The process encompasses only two nuclear reactions as far
as energy production is concerned.

300 >4 C
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Produclion Factor

RWS log(s) — log(pi( B0}

Importance of
?C(a,y)°0
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Relevant 10 state structure
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300 keV corresponds to quiescent helium burning.
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Composition of the cross section

1. Radiative capture to the ground state:
(1) I=1, E1 component.
(1) =2, E2 component.
2. Cascade transitions:
(1) 6.0 state: structurally the same as gs.
(1) 6.1 state: 1=1,2,3,4,5 possible, but little observed.

(in) 6.9 state: 1=0,1,2,3,4: 0,2,4 and 13 coherent in total
cross section. The strongest cascade.

(iv) 7.1 state: 1=1,2,3,4 possible, little observed.
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What do we know?

1. The basic nuclear structure of 160. \\ , l/ \\\ If
2. Many measurement of the 12 C(a,y )16 () cross section between 1.-
3.5 MeV cm. ’

3. Direct determination of a -widths by scattering methods, like
elastics or the N spectrum.

4. y-decay widths

5. More indirect information like from transfer reactions.

—_—)  HOW tO bring it all together?

Data, so called data, and theory
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So called data

Phaseshifts
/=1 phaseshifts

' I I I I redl par Il—l—i
300 imaginary par %
-|-4-H-+‘db *
From )
250 | N e
ot 4t 4t 2i3H- o+ *
Notre )
+
Dame 200 . .
= ot
data 8 X
e
E 160 v + 7
= Iy
M+++
100 F - 7
+
»

January 06



Electromagnetic transitions

From the Maxwell equations the charge and current free equations for the
vector potential A can be derived as:

1 0°A
¢’ ot

Electric and magnetic fields are given by derivatives of the
vector potential:

AA — 0 V-A=0

=——22 H=VxA

Looking for stationary solutions and separating by angular momentum gives
two solutions for the electromagnetic radiation ("electric’ and ‘magnetic’):

AfM — k}?ICLV X L”LM AfM — iCLLuLM

with the solutions of the one dimensional Helmholtz equation:

(or/c)”

uy, = Jj, (k,r)Y,, 0,0) = m

Y, 0,0)
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Electromagnetic transitions

With the latter approximation because of the long wavelengths of gamma
radiation compared to a nuclear size.

First order perturbation theory gives the transition probability as:

21 5 dN

T —|<f|H’|i>|

i—f
with the hamiltonian A, built upon the vector potential A.

H=._° P-A_ Hpic H
mc 2 2mc

After lots of approximations is then:

‘0{ ( ](COH Zﬁﬁf:O{w[é](ij (@_”
fic hic \ mca c
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Some basics about populating states

angular momenta addition: c = a + b

Eigenfunctions of c: | cyab >= Z| ao >/ bp > (aa,bP |cy)
R Clebsch-Gordan coeff.

3 vectors: Racah Coefficients W, 4
vectors 9 j symbols {}.

<A|lp|A>=[<A|Y ><¥|A4">]

avg

[OQlue =< ¥ [Q|¥ >= Y < A|Q[A'>[< AW >< ¥ [4>],, =Tr[Qp]

2 ..
Ir [ P ] <1 Example: no polarization
For the eigenstates |ao> a density tensor can be constructed so that: <ao|p|aa'>=38,, /a’
- and i
P (aa') = (-)" ™ (aa,a'-a'| k) <aa | p |aa'> Poolaa)=1/a
oo’




More basics about populating states

Unitarity results in:

<ao|pla'a'>=) (-) " (an,a"-a'| kiK)p,, (aa)
ki

Similar the efficiency tensor is:
e (aa') =Y (-)" ™ (aq,a'—a'| k) <ao |€ | ao'>

ao'

Then 1s the correlation function is:

W =Tr[pe]= Z< ao |p|a'a'><aa |e|a'a'>= ZpkK (aa')e, (aa')

aa'oo' aa'kx

Wigner-Eckart theorem: Be |bf >| /A >=| bBIA > the final product state from:

<bBIA |= Y <BBIL |ao >< ac |
Then there is an interaction fifatrix element independent of a, 3, and A so that
<bBD. |=<b|l]|a> (b, |aa) < aa
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Ground state angular distributions

b
a=s,+s, 14 L

2
b=a+/, a
b=c+L, =

For one transition the angular distribution is (very general):
_ ' N N '
W = Z Py, (bb )pkflngl (£,¢, )8ka,, (bD')e . (4.0,")

The density matrices can expressed by the initial state a:

Pre, BB )Py, (1)) =3 Py (a@)(...])- 0} < b | a>< | [ >

For a particle-y cascade is then:

WO)=Y (-)“(6n°a>) "' Z(1blLb';ak)Z,(L,bL,b'; ck)
<b||l|a><b|l|a><c|L,||b><c|L,||b>" O,P (cosb)
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Ground state angular distributions

From angular momenta addition rules the ground state
angular distribution in"?C(q,y )!*0can be derived as

1

we®,,E)= - @, ,.E)+w,®,,E)+W,0,,F))
1+GE1
with w,©,,E)=1-PF/(cos@®,))
with w,0,,E)= G(i ;(1+7P(cos(e ))——2P(cos(€) )
with  ,0,.E)= —[SG(E 172 cos(@,, (P (cos®, )) ~ Py(cos(®. )
@)

1

with ®,=95,-0,+ arctan(%n)
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