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Education is what remains after you have 
forgotten everything you have learned.

εi−
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Nuclear Astrophysics
The luminous structure of the Universe is largely given by the 
properties of the nuclei inhabiting it. These provide the energy
source and thus the structure of stars and produce this way new 
nuclei and elements.  

Nuclear Physics explains the working of nuclei. Many properties of 
nuclei and nuclear scattering are known from experiments with no
particular interest in astrophysical questions.

Nuclear Astrophysics is generally the nuclear physic dedicated to 
questions arising directly from astrophysical problems. 

However, the field is rather broad and only a few problems will 
be discussed here. E.g. there will be no discussion of neutron 
physics, e.g. capture cross sections, r-process or others.
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Overview of lectures
1. A little stellar astronomy

77Be(p,γ)Be(p,γ)88BB experimentexperiment

2. A bit more on scattering theory 

3. 12C(α,γ)16O, some discussion, new results

5.

7. Radioactive beam experiments at TRIUMF

6. 7Be(p,p)7Be and TACTIC

4.  40Ca(α,γ)44Ti

1st day



January 06 Kolkata

A Star

Gravity

Radiation

Stars are most of their
lives in a quasistatic 
equilibrium between radiation
produced in nuclear burning and
gravity pulling against the 
radiative pressure. 

Radiation

After a long random
walk light is radiated
away.
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Stars twinkle

Globular cluster M3: RR Lyrae stars
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The recirculation of matter

Galactic cloudsGalactic cloudsMatter in stars

Nuclei are the DNA of the Universe. 

Stan Woosley
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Classifying stars: The Hertzsprung-Russell Diagram

Stars can be classified according
to surface temperature and 
luminosity.

Stellar evolution leads to a 
path through the HRD.

Stellar evolution is directly 
linked to microscopic, 
nuclear physics.
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The microscopic world: particle scattering
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What are Phaseshifts?
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Coulomb Potential
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More solutions to the Coulomb problem
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Derivation of the R-function

λE

Spinless case, one channel, states in a square potential; 
then set of eigenstates fulfilling the Schrödinger equation:
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Derivation of the R-function
From completeness and orthonormality follows:
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Multiplying the two Schrödinger equations with the opposite wavefunction
and subtraction as well as integration from 0 to a gives:
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Derivation of the R-function
With the Green’s function
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Scattering Matrix

OI U−=ψ
With defining the 
scattering matrix U:

I incoming wavefunction, O outgoing.

In single channel R-matrix theory is then: 
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Generalize the scattering matrix
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for non elastic reactions is (generalization for elastic possible):

With the following symbols:

α, α’ physical channel (p, α, others) ; k-wave number

J total spins of (compound) states; U –scattering matrix

s incoming channel spin

l angular momentum

gJ spin statistical factor

i.e., elements of the 
scattering matrix 
are square roots of 
reduced cross 
sections for 
individual quantum 
numbers.

The scattering matrix can be generalized for particles 
with spins and reactions with multiple channels, so that
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What are Phaseshifts?
Then, more formally, phaseshifts are:
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with         being the Coulomb phase and

the nuclear phaseshift, usually a complex 
number, real part elastic, imaginary part sum of all 
inelastic channels..

lαω
J
slαδ

As far as elastic scattering is concerned a 
Coulomb term and a Coulomb-nuclear 
interference term have to be added.
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Helium Burning
• When hydrogen burning has stopped in the core it starts to contract slowly till  helium 

ignites. -> “Helium Burning”.  The process encompasses only two nuclear reactions as far 
as energy production is concerned.

C3 12→α
OC( 1612 ),γα
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Importance of

SNIa pre-explosion development

S. Woosley, 2002

OC( 1612 ),γα
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Relevant 16O state structure 

300 keV corresponds to quiescent helium burning.
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Composition of the cross section
1. Radiative capture to the ground state:

(i) l=1, E1 component.

(ii) l=2, E2 component.

2. Cascade transitions:

(i) 6.0 state: structurally the same as gs.

(ii) 6.1 state: l=1,2,3,4,5 possible, but little observed.

(iii) 6.9 state: l=0,1,2,3,4: 0,2,4 and 13 coherent in total    
cross section. The strongest cascade.

(iv) 7.1 state: l=1,2,3,4 possible, little observed.
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What do we know?

OC( 1612 ),γα

1. The basic nuclear structure of 16O.

2. Many measurement of the                           cross section between 1.-
3.5 MeV cm.

3. Direct determination of    α -widths by scattering methods, like 
elastics or the 16N spectrum.

4.  γ-decay widths

5.  More indirect information like from transfer reactions.

How to bring it all together?

Data, so called data, and theory
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So called data
Phaseshifts

l=1 phaseshifts

From 
Notre 
Dame 
data
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Electromagnetic transitions
From the Maxwell equations the charge and current free equations for the 
vector potential A can be derived as:
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Electromagnetic transitions
With the latter approximation because of the long wavelengths of gamma 
radiation compared to a nuclear size.  

First  order perturbation theory gives the transition probability as: 
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Some basics about populating states
angular momenta addition: bac +=

)|,(||| γβαβαγ
αβ

cbabaabc >>>=∑Eigenfunctions of c:
Clebsch-Gordan coeff.
3 vectors: Racah Coefficients W, 4 
vectors 9 j symbols {}.

Normally, we observe many, i.e. an ensemble, of atoms/nuclei being uncorrelated 
described by an impure state Ψ. An element of the density matrix is then
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for a set of quantum numbers A which describe a feature of the system. The 
expectation value of an operator acting on this system is
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More basics about populating states
Unitarity results in:
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Ground state angular distributions
Expressions can be derived from 
e.g. A.J. Ferguson (1965), 
requiring to work out angular 
correlation coefficients and keep 

the accounting right.
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For one transition the angular distribution is (very general):
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The density matrices can expressed by the initial state a:

For a particle-γ cascade is then:
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Ground state angular distributions

From angular momenta addition rules the ground state 
angular distribution in         can be derived asOC( 1612 ),γα
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