## **Nuclear Astrophysics - I**

#### Carl Brune



School-cum-Workshop on Low-Energy Nuclear Astrophysics, Saha Institute of Nuclear Physics, Kolkata, India

16 January 2006

## **Astrophysics and Cosmology**

#### Observations

- Electromagnetic Spectrum: radio, microwave, IR, optical, UV, x-rays, γ-rays
- Neutrinos
- Cosmic Rays
- Meteorites
- Terrestrial Abundances
- Gravitational Waves

#### **Underlying Physics**

- Atomic Physics
- Nuclear Physics
- Particle Physics
- Statistical Mechanics
- Hydrodynamics
- Gravity (General Relativity)



. . . . .

### **Nuclear Astrophysics**

Nuclear Physics plays a very important role in astrophysics because:

Nuclear reactions can provide a tremendous amount of energy e.g. <sup>3</sup>He + <sup>3</sup>He → 2p + <sup>4</sup>He + 13 MeV
 Nuclei are created and destroyed via nuclear reactions (aka nucleosynthesis)

#### Scenarios include:

- Stellar processes
- Big Bang
- Cosmic-ray induced processes
- <mark>.</mark> ...



Age of Universe: 13.7 GyrAge of Solar System: 4.5 Gyr





### Supernova Remnant N132D

- Exploded 3,000 years ago
- 169,000 light-years away
- Blue: O<sup>+</sup>
- $\Box Green: O^{2+}$
- Pink: S<sup>+</sup>



### "Laundry List" of Processes

| Big Bang Nucleosynthesis | Light Elements (A<10)                                             |
|--------------------------|-------------------------------------------------------------------|
| Hydrogen Burning         | Main sequence of stellar evolution (A<60)                         |
| Helium Burning           | Red giants (A<60, especially <sup>12</sup> C and <sup>16</sup> O) |
| "Heavy Ion" Burning      | Late stages of massive star evolution<br>(terminates at Fe)       |
| S Process                | "Slow" neutron capture (A>60)                                     |
| R Process                | "Rapid" neutron capture (A>60)                                    |
| RP Process               | Rapid proton capture: novae and x-ray bursters                    |
| γ Process                | Photodisintegration                                               |
| Cosmic-Ray Spallation    | Li and Be                                                         |
| v-induced reactions      | 5                                                                 |
| Neutron Stars            | R-Process site?                                                   |



#### **Nuclear Binding Energies**



Number of nucleons in nucleus

#### What is the needed Nuclear Physics?

- Nuclear masses, Q values
- Half lives, decay modes
- Resonance energies, partial widths
- Reaction cross sections

#### **Breit-Wigner Formula**

$$\sigma(E) = \frac{2J+1}{(2J_1+1)(2J_2+1)} \frac{\pi}{k^2} \frac{\Gamma_1 \Gamma_3}{(E-E_R)^2 + \Gamma^2/4}$$

consider the process:  $1 + 2 \rightarrow 3 + 4$ 

where  $n_i$  = number density of species i

$$\frac{\mathrm{d}n_3}{\mathrm{d}t} = n_1 n_2 \langle \sigma v \rangle$$
$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu}} (kT)^{-3/2} \int_0^\infty E \, \sigma(E) \, \exp(-E/kT) \, \mathrm{d}E$$

Reaction Rate Formalism: T = temperature k = Boltzmann constant

#### **More Nuclear Physics**





Neutron-induced Reactions

No Coulomb barrier  $\sigma \sim E^{-1/2}$ 

#### Statistical Reactions (A>60)

- Reaction rate determined by many resonances
- Rates can be computed using statistical methods
- Requires systematic information: level densities, optical potentials,...

## **Big Bang Nucleosynthesis**

- Standard Model of Particle Physics
- General Relativity
- Homogeneity and Isotropy
- Nuclear Cross Sections



single free parameter: Baryon Density (or 0 = baryon-to-photon ratio)



- Determine 0
- Compare to astronomical observations
- Test physics input, e.g.
  - 3 neutrino generations
  - phase transitions?

## **Nuclear Physics**



Inverse reactions also included





data: CRB PhD Thesis

## <sup>3</sup>He(n,p)<sup>3</sup>H



## **Evolution of the Elements**



## **Observing <sup>2</sup>H with QSOs**



#### D/H can be extracted:

| QSO           | $\log_{10}$ D/H |
|---------------|-----------------|
| PKS 1937-1009 | -4.49(4)        |
| Q1009+2956    | -4.40(7)        |
| Q0130-4021    | < -4.17         |
| HS 0105+1619  | -4.60(4)        |

It would appear that we know the primordial Deuterium abundance within ~5%!



Relative Velocity [km/s]

### **Lithium Observations**



#### We have observations for D, <sup>3</sup>He, <sup>4</sup>He, and <sup>7</sup>Li which are thought to represent primordial abundances

Big Bang Nucleosynthesis:  $0 = 5.1(6) \times 10^{-10}$ 

The lithium data are not in good agreement.



### **Cosmic Microwave Background**





### **Cosmic Microwave Background: Inferences**

WMAP Year 1 (Bennett et al.)

| quantity                             | value                      |
|--------------------------------------|----------------------------|
| S <sub>tot</sub> (total density)     | 1.02(2)                    |
| S <sub>7</sub> (dark energy density) | 0.73(4)                    |
| S <sub>m</sub> (matter density)      | 0.27(4)                    |
| S <sub>b</sub> (baryon density)      | 0.044(4)                   |
| t <sub>0</sub> (age of universe)     | 13.7(2) Gyr                |
| 0 (baryon-to-photon ratio)           | 6.1(3) x 10 <sup>-10</sup> |

Big Bang Nucleosynthesis:  $0 = 5.1(6) \times 10^{-10}$ 





### **Present Status of BBN**

- Exciting new developments in observations of the CMB, light elements, and distant supernovae. New CMB data, including polarization, are coming soon from WMAP.
- Agreement is reasonable but not perfect. Lithium?
- From a nuclear physics point of view the field is mature, but higher-accuracy data are needed.
- Recently completed or ongoing measurements:
  - p(n, ()d
  - d(d,p)t and d(d,n)<sup>3</sup>He D.S. Leonard et al. (UNC/TUNL)
  - <sup>3</sup>He(<sup>4</sup>He,()<sup>7</sup>Be

## **Classical Novae**



 Elements as heavy as calcium may be synthesized

• Primary target for gamma-ray telescopes (<sup>7</sup>Be, <sup>18</sup>F, <sup>22</sup>Na, <sup>26</sup>Al)

- 2-3 / month in our Galaxy
- Binary star systems

• Mass transferred from less massive star (red giant) to white dwarf companion

Hydrogen gas burns
 explosively with CNO nuclei
 → thermonuclear explosion



#### **Additional Features of Novae**

- CO WDs:  $\overline{X(^{12}C) : X(^{16}O) : X(^{20}Ne)} = 5 : 5 : 0.1$
- ONe WDs:  $X(^{16}O) : X(^{20}Ne) : X(^{24}Mg) = 10 : 6 : 1$
- Peak temperatures ~0.2-0.4 GK (~20 keV)
- 30 novae / yr,  $10^{10}$  yr,  $2x10^{-5}$  M<sub>sun</sub> / outburst
- Barely contribute to overall Galactic abundances
- Important for individual nuclei (e.g. <sup>17,18</sup>O)

### Time Evolution of Peak Temperature



V1974 Cygni

S. Starrfield et al.

### Time Evolution of Peak Luminosity



V1974 Cygni

S. Starrfield et al.

## The Hot CNO Cycle



- Powers nova explosions
- Hydrogen  $\rightarrow$  Helium
- Large uncertainties in some reactions
- <sup>17</sup>**F(p,γ)**<sup>18</sup>Ne <sup>17</sup>O, <sup>18</sup>F production
- <sup>18</sup>F(p,α)<sup>15</sup>O and <sup>18</sup>F(p,γ)<sup>19</sup>Ne
   <sup>15</sup>N, <sup>18</sup>F production
   <sup>17</sup>O/<sup>18</sup>O ratios

#### **Time Evolution of Abundances**



Iliadis et al.

#### Charged Particle Reactions A = 15 - 40

#### Key Features:

- Resonant contributions (usually dominant)
- Non-resonant contributions
- Coulomb barrier

#### Resonance Properties:

- Energy
- Partial Widths
- Spin and Parity

#### All properties are important!

#### Typical Cross Section



#### More on Resonances



### Mirror Symmetry

- Predict resonance energies
- Estimate partial widths
- Isobaric Mass Multiplet Eq.



#### Summary of Today's Lecture

- The Big Picture regarding Nuclear Astrophysics
- Big-Bang Nucleosynthesis
- Overview of Novae

#### Next: experiments relevant to Novae



### **Experimental Approach**



#### Si Strip Detectors



#### Results



### Results

| E <sub>r</sub> (keV) | Jπ   | Γ <sub>p</sub> (keV)        |                                                                 |
|----------------------|------|-----------------------------|-----------------------------------------------------------------|
| 8                    | 3/2+ | <b>4H1</b> 0 <sup>-37</sup> | 10 <sup>3</sup> - <sup>16</sup> F(p,α) <sup>15</sup> O -        |
| 26                   | 1/2- | 3H10 <sup>-20</sup>         | • HRIBF Data                                                    |
| 38                   | 3/2+ | 2H10 <sup>-14</sup>         |                                                                 |
| 287                  | 5/2+ | <b>4H1</b> 0 <sup>-5</sup>  |                                                                 |
| 330                  | 3/2- | 2.2(0.7)H10 <sup>-3</sup>   | 10 <sup>-3</sup> 0.2 0.4 0.6 0.8 1.0<br>E <sub>c.m.</sub> (MeV) |
| 665                  | 3/2+ | 15.2(1.0)                   |                                                                 |

#### **Reaction Rate**



#### For the Future

#### Mirror Nucleus: <sup>18</sup>F(d,p)<sup>19</sup>F proton spectrum



- Lower-energy resonances very uncertain
- Too weak to measure directly
- Study mirror nucleus more carefully
- Proton transfer reactions?

Note: SPI/INTEGRAL should be able to see 511-keV photons following a nova outburst provided it is with ~5kpc of earth!

### The Origin of <sup>26</sup>Al in our Galaxy

- source of 1809-keV gamma rays
- half-life = 0.73 million years

Novae are likely a significant source, via the sequence  ${}^{24}Mg(p,\gamma){}^{25}Al(\beta^+){}^{25}Mg(p,\gamma){}^{26}Al:$ 

- Evidence from pre-solar grains
- Predicted by models (ONe novae)

<sup>26</sup>Al is not produced if this sequence occurs: <sup>24</sup>Mg(p, $\gamma$ )<sup>25</sup>Al(p, $\gamma$ )<sup>26</sup>Si( $\beta$ <sup>+</sup>)<sup>26m</sup>Al( $\beta$ <sup>+</sup>)<sup>26</sup>Mg

### 1809-keV flux distribution (COMPTEL on CGRO)



### Expanded Reaction Network



Many more nuclei must be taken into consideration ! Changes in temperature can change the path !

## **Edwards Accelerator Laboratory**



4.5-MV tandem accelerator
p, d, <sup>3,4</sup>He, heavy ion beams
30 m time-of-flight tunnel

#### Neutron Time-of-Flight Technique

 $^{24}Mg + {}^{3}He Y {}^{26}Si(*) + n$ 



- time of flight Y neutron energy
- kinematics Y  $E_x$  in <sup>26</sup>Si
- $\Delta t$  . 1ns
- long flight path, low  $E_n$  desirable

Excellent energy resolution achievable !

#### Neutron Energy Spectra (Y. Parpottas)

#### full spectra



### <sup>24</sup>Mg(<sup>3</sup>He,n)<sup>26</sup>Si(\*)



#### Key Result

Mirror nucleus leads us to expect  $3^+$  and  $0^+$  in this region.

### Implications for <sup>25</sup>Al(p,γ)<sup>26</sup>Si



- Our reaction rate is a factor  $\sim 20$  smaller at nova temperatures than previously thought.
- The  $J^{\pi}$  assignments should be verified.

#### Implications for <sup>26</sup>Al production in Novae

• Calculations using the previous reaction rate found that novae could produce up to 20% of the observed galactic <sup>26</sup>Al (Jose' et al.).

- Recent numerical studies (Iliadis et al. 2002) find less sensitivity to this reaction rate than expected.
- Other nuclear physics inputs have significant uncertainties.
- Recent data from SPI/INTEGRAL indicates other source may be more important.

#### Unveiling massive star nucleosynthesis in Cygnus X 1809 keV gamma-ray line emission from radioactive <sup>26</sup>Al decay

#### SPI/INTEGRAL 1809 keV line spectrum of Cygnus X



Width  $: 3.3 \pm 1.3 \text{ keV} \Rightarrow \Delta v = 550 \pm 210 \text{ km s}^{-1}$ 



DRAO radio image of ionising massive star clusters in Cygnus X that are at the origin of the <sup>26</sup>Al production detected by SPI

Jürgen Knödlseder (on behalf of the INTEGRAL team), Centre d'Etude Spatiale des Rayonnements, Toulouse, France



### In Summary:



- Two reactions important for energy generation and nucleosynthesis in novae have been investigated.
- At Ohio University we are presently working on <sup>17</sup>O(<sup>3</sup>He,n)<sup>19</sup>Ne (M. Hornish, H. Hadizadeh, T. Massey, CRB,...).
- Many labs are working on these questions with both stable beams (OU, UNC/Duke, Yale, Texas A&M,...) and radioactive beams (ORNL, NSCL, ANL, TRIUMF,...).
- We look forward to new data from ground- and space-based observatories and other probes of our universe.





## Rare Isotope Accelerator



#### Nuclear Astrophysics at RIA

#### <10 MeV beams

- p-, $\alpha$ -,n-induced reaction rates
- (ANC, nucleon transfer, ...)
- nuclear structure experiments

#### Stopped beams

- Masses
- β,βn,βp,p decays



#### Reaccelerated Beams

#### Neutron Facility

 n-capture on radioactive targets

#### <1 MeV beams

p-, α-induced reaction rates (direct measurements)
resonant scattering

#### >100 MeV beams

- p-,α-,n-induced reaction rates (transfer/knockout, Coulomb breakup)
- β,βn,βp,p decays
- charge exchange reactions
- TOF mass measurements
- Nuclear structure experiments

# **RIA Floor Plan**



47 m • 24 m



### **RIA** Intensities

