Supernovae from massive stars

Events in which heavy elements are made that enrich the interstellar medium from which later stars form Alak K. Ray, TIFR, Mumbai

A core collapse Supernova: Death of a massive star

These are violent explosions in the universe

Energy emitted (EM+KE) ~ few x 10^{51} erg.

(Compare the energy nuclear explosions ~ 1 MT \approx 4x10²² erg) The energy budget in neutrinos is ~ 3 x10⁵³ erg (I.e. only 1% of the total energy is "visible")

Type II, Ib, Ic Sne leave behind Neutron star or Black holes and have massive progenitors (> 8 M_{Solar})

Occur only in Spiral arms of galaxies (young population of stars)

Energy scales of explosions

Chemical explosives Nuclear explosives Novae explosions Thermonuclear explosions Core collapse supernovae

~10⁻⁶ MeV/atom ~1MeV/nucleon few MeV/nucleon few MeV/nucleon 100 MeV/nucleon

Why study supernoave?

- Enrich galaxy with heavy elements such as Iron, Calcium, Silicon, which are crucial to life.
- Influence formation of new stars.
- Are used to measure the geometry of the universe.
- Result of the stellar and influence galaxy evolution.
- Possible source of energetic cosmic rays.

Different types of Supernovae

thermonuclear

core collapse

Spectra and SN Classification

Ni poor SNII in Spiral Galaxies

.

Endpoints of stellar evolution

Log central density (g cm-3)

Table 1. Evolution of a 15-solar-mass star.

produ	ct product	(10 ⁹ K)	(gm cm ⁻³)	(solar units)	losses (solar units)
Hydrogen 11 Myr H Hellum 2.0 Myr He Carbon 2000 yr C Neon 0.7 yr Ne Oxygen 2.6 yr 0, Mg Silleon 18 d Si, S, J Iron core ~1 s Fe. Ni.	He C, O Ne, Mg O, Mg Si, S, Ar, Ca Si, S, Ar, Ca Ar, Ca Fe, NI, Cı; TI, Cr. TI, Neutron star	0.035 0.18 0.81 1.6 1.9 3.3 >7.1	$5.8 \\ 1,390 \\ 2.8 \times 10^{5} \\ 1.2 \times 10^{7} \\ 8.8 \times 10^{6} \\ 4.8 \times 10^{7} \\ > 7.3 \times 10^{9}$	28,000 44,000 72,000 75,000 75,000 75,000 75,000	$\begin{array}{c} 1,800\\ 1,900\\ 3.7\times10^{5}\\ 1.4\times10^{8}\\ 9.1\times10^{8}\\ 1.3\times10^{11}\\ > 3.6\times10^{15} \end{array}$

 * The pre-supernova starts defined by the time at which five contraction speed any where in five iron coveresches 1,000 km s $^{-1}$.

Temperature and Luminosity changes as a star evolves

Interior composition of a massive star

Internal structure of stars

Core Collapse and Explosion

C. Cardall

Neutrino cooling and neutrino-driven wind ($t \approx 10$ s)

Important Core Collapse Supernovae

(SN1987A, 1993J, Crab, Caseopeia A SNRs)

SN 1987A

Before

After

SN 1987A Light-Curve

A supernova with identity crisis

Supernova 1993J

Spectrum showed hydrogen near maximum light but Weakened to having strong helium line. Type II \Rightarrow Type Ib 17 Jan 2006 SINP

Spectra of SN 1993J

Cassiopeia A in X-ray bands observed by Chandra

0.3 -- 1.55 keV

3.34 -- 10 keV

Cassiopeia A with XMM-Newton

Chandra Image overlaid on the pixel Grid used in XMM Spectral analysis

X-rays from the SN shock observed by spaceborne telescopes

X-ray telescopes

Cassiopeia A X-ray spectrum

Willingale et al 2002

Cas A: Abundance maps

Doppler maps of Cas A from Si-K, S-K and Fe-K emission lines

Cas A: Si-K , S-K and Fe-K fluxes vs Doppler velocity

Cas A: flux distributions of Si-K, S-K and Fe-K in radius velocity plane

Nuclear physics of precollapse (Electron capture and beta decay)

³⁴Co

 10°

 10^{2}

101

 10^{3}

Time till bounce (s)

0.44

0.42

15 Ma

 10^{5}

104

Nuclear physics of precollapse

SN II (or CC): Collapse stage

Since neutrinos carry away entropy, composition is dominated by nuclei and not nucleons.

temperatures and densities are large enough to maintain nuclear statistical equilibrium (for given Y_e nuclei with highest binding are favored)

electron capture⇒Y_e decreases Þneutron-rich and heavy

nuclei (β-decay)

nuclei with A~65-112, including N>40 and Z<40 (neutron shell-blocked nuclei)

EC and β -decay

Allowed transitions

- Fermi $\tau_+(i) = \Sigma \tau_+(i)$
 - $\Rightarrow \Delta L = \Delta S = 0, \Delta T = 0, 1$ **0+** \rightarrow **0+** (IAS dominates) Sum Rule: $\Sigma\beta^{-} - \Sigma\beta^{+} = N-Z$
- β-decay
- Gamow-Teller $\sigma \tau_{\pm} = \Sigma \sigma(\iota) \tau_{\pm}(i) = \Delta L = 0, \Delta S = 1, \Delta T = 0, 1$ $0^+ \rightarrow 1^+$ (Giant resonances) Sum Rule: $\Sigma\beta^- - \Sigma\beta^+ = 3(N-Z)$
- EC and b-decay $B(GT_{+}) = \sum_{i,f} \frac{n_i^p n_f^h}{(2j_i + 1)(2j_f + 1)} \left| \left\langle f | \vec{\sigma} \tau_{+} | i \right\rangle \right|^2$ strength: $\frac{d\sigma}{d\Omega} = \left[\frac{\mu}{2\pi\hbar}\right]^2 \frac{k_f}{k_i} N_D |V_{\sigma\tau}|^2 \left| \left\langle f \left| \sum_k \sigma_k \tau_k \right| i \right\rangle \right|^2$ cross section in chargeexchange: 17 Jan 2006 SINP

EC and Beta-decay in stars

- Electrons in degenerate gas are sufficiently energetic to populate the GTR: GT₊
- F and GT_{_} outside the Q window; phase space for electron is blocked by electron gas
- due to finite temperature excited states are thermally populated and connect to lowlying states in the daughter with increased phase space (URCA reactions)

Estimating transition strengths

- Weak interaction rates by Fuller, Fowler, Newman (FFN) (1980-1985)
- Use experimental info from ground-state to low-lying excited states.
- Add collective strength via single particle representation determined via independent particle model (IPM)
- Experimental results [(p,n) and (n,p)] indicate:
- There is strong quenching for medium-heavy nuclei
- Fragmentation of strength
- Estimate strengths via Spectral Distribution Theory
- Make shell-model calculations
- Take into account residual interactions between valence nucleons

schematics

Large-scale shell-model calculations (A~55-65)

- :FFN (IPM model)
- :data (n,p) (TRIUMF)
- Let Caurier et al. (1999) SM
- Caurier et al. folded with experimental resolution

Beta decay calculation of Cu66

Using spectral distribution theory

Ray et al 1996 Kar et al 1998

Isobaric Analog States and Gamow-Teller transition centroids

17 Jan 2006 SINP

Sutaria & Ray 1995

GT+ Centroids

$$E_{\rm GT^+} = 13.10A^{-1/3} - 11.28(N-Z)/A + 12A^{-1/2}\delta_{A_{\rm odd}}.$$
(5)

EC and Beta decay rates

Effect of the rates on precollapse stage of SNII

WW: Woosley, Weaver (FFN) LMP:Langanke, Martinez-Pinedo & Heger, Langanke (SM)

Beta decay Counteracts Y_e reduction But leads to Cooling, reduction of entropy

Neutrino emission during galactic stellar core collapse and signals in SK and SNO at 1 kpc

FIG. 1. "Snapshot" neutrino spectrum (change in electron fraction MeV⁻¹ per baryon in a narrow density interval $\Delta \rho_{10} = 0.0002$ around mean one-zone $\rho_{10} = 9.8668 \text{ g cm}^{-3}$ for a 15M_o star and $|M_{\text{GT}}|^2 = 1.2$ and later 0.1.

Sutaria & Ray 1997

FIG. 2. (a) Cumulative neutrino fluence up to $\rho_{10} = 24.16 \text{ g cm}^{-3}$, with $M = 15 \text{M}_{\odot}$, D = 1 kpc, and $|M_{\text{GT}}|^2 = 1.2$ and later 0.1. (b) The spectrum in (a) folded with the detection cross section for c.c. reaction $\nu_e(d, pp)e^-$ in SNO. (c) The spectrum in (a) folded with the detection cross section for $\nu_e \cdot e^-$ scattering in Super-Kamioka.

Stellar core bounce and explosion and neutrino emission

17 Jan 2006 SINP

After the explosion Polluters of the environment

Supernova 1995N at an extragalactic distance

SN 1995N

Discovered on 1995 May 5

Parent Galaxy is at a distance D= 24 Mpc (MCG-02-38-017)

Extragalactic SN 1995N observed with Chandra and ASCA

P. Chandra et al 2005

SN 1995N Chandra Observations (March 2004)

Total counts	758 counts
Temperature	2.35 keV
Absorption column Depth	1.5 x 10 ²¹ cm ⁻²
0.1-2.4 keV Unabsorbed flux	0.6-1.0 x 10 ⁻¹³ erg cm ⁻² s ⁻¹
0.5-7.0 keV Unabsorbed flux	0.8-1.3 x 10 ⁻¹³ erg cm ⁻² s ⁻¹
Luminosity (0.1-10 keV)	2 x 10 ⁴⁰ erg s ⁻¹

SN 1995N light curve with low angular resolution

ROSAT BAND (0.1-2.4 keV)

ASCA BAND (0.5-7.0 keV)

SN 1995N X-ray Spectrum with Chandra

X-ray the innards of a massive star (SN 1995N)

TABLE 6 Elements Cosynthesized with Ne and Their Mass Fractions in the Interiors of Massive Stars Prior to Supernova Explosion						
$M_{ m star}$ on ZAMS (M_{\odot})	Mass Coordinates (M_{\odot})	Composition	X _{Ne}	Xo	Ne Mass in the Layer ^a (M_{\odot})	Comments
15	1.8 - 2.6	¹⁶ O, ²⁰ Ne, ²⁴ Mg	0.26	0.7	$2.1 imes 10^{-1}$	O+Ne+Mg core: product of C burning in C+O core
	2.6 - 3.05	¹⁶ O, ¹² C, ²⁰ Ne, ²⁴ Mg	≤ 0.05	0.75	$2.3 imes 10^{-2}$	C burning around C+O core
	3.05-3.8	⁴ He, ¹² C, ²⁰ Ne, ¹⁴ N	0.0133	0.002	1×10^{-2}	Partially burned helium in He-shell burning
	3.8 - 4.2	⁴ He, ¹⁴ N, ²⁰ Ne	0.0017	0.008	$6.8 imes 10^{-4}$	Unburned He core
25	1.9-5.7	¹⁶ O, ²⁰ Ne, ²⁴ Mg	0.2	0.7	$7.6 imes 10^{-1}$	O+Ne+Mg core: product of C burning in part of C+O core
	5.7-7.1	¹⁶ O, ¹² C, ²⁰ Ne	≤ 0.08	0.57	1.1×10^{-1}	Part of C+O core: product of complete He and C burning at high temperature
	7.1 - 8.1	⁴ He, ¹² C, ²⁰ Ne	0.02	0.0	$2.0 imes 10^{-2}$	Partially burned helium in the He core beyond the external edge of C+O core up to the edge of He core
	8.1-8.3	⁴ He, ¹⁴ N, ²⁰ Ne	0.0017	0.005	$3.4 imes 10^{-4}$	Unburned He core: product of CNO H burning

NOTE.-After Woosley et al. (2002), Fig. 9.

^a Compare with neon mass obtained from the Chandra spectrum $\sim (0.5-1.0) \times 10^{-2} M_{\odot}$.

X-ray spectrum of SN 1998S

Elements synthesis in SN 1998S

TABLE 5 Elemental Abundances from VMEKAL Fit to Summed Spectrum of SN 1998S					
Element	Best-Fit Abundance	90% Confidence Interval			
O	0.7	0–2.9			
Ne	15	8.7-35			
Mg	0	0-1.6			
A1	33	0-135			
Si	5.7	2.4-15			
S	8.7	3.0-24			
Ar	18	3.4-52			
Ca	0.8	0-13			
Fe	3.0	1.8-6.8			
C	1.0	0-200			
N	0	0-18			
Na	0	0-36			
Ni	0	0-14			

NOTE.—These abundances are actually the ratio of a given element to H normalized to the similar solar ratio. For example, "Ne" is actually $[(Ne/H)_{988}]/[(Ne/H)_{\odot}]$.

Abundance ratios and constraints on progenitor mass of SN 1998S

TABLE 6 ELEMENTAL ABUNDANCE RATIOS RELATIVE TO SOLAR FOR SN 1998S AND THEORETICAL MODELS Abundance Ratio SN 1998S $13 M_{\odot}$ $15 M_{\odot}$ $18 M_{\odot}$ $25 M_{\odot}$ $40 M_{\odot}$ $20 M_{\odot}$ Ne / Si..... 0.6 - 140.140.170.86 1.1 2.2 0.56

0.49

0.43

0.58

0.80

1.09

1.4

2.1

2.4

1.1

1.6

0.18

0.20

Mg / Si.....

O / Si

0 - 0.7

0 - 1.2

XMM spectrum of SN1993J (synthetic)

Accepted observing proposal on XMM: A.R. , P. Chandra et al, 2006

Summary

- Neutrino driven winds may be the site of r-process nucleosynthesis in supernova
- Weak interaction processes (EC and Beta decays are important for presupernova structure
- Many types of nuclear reactions are important in determining the composition of the debris
- Supernovae enrich the interstellar medium with heavy elements from which new stars form

Thanks !

- Collaborators: Kamalesh Kar Poonam Chandra Firoza Sutaria Sukhendu Sarkar Eric Schlegel Wolfgang Pitesch
- Shri Kulkarni
- Roger Chevalier
- Claes Fransson
- Ken'ichi Nomoto
- Bernd Aschenbach
- Stefan Immler
- Soumya Chakravarti

Nucleosynthesis in the r-process

