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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.
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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.

@ Each edge is present or open with probability p and absent or
closed with probability 1 — p where p isin (0,1).

@ Percolation corresponds to the existence of infinite connected

component.
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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.

@ Each edge is present or open with probability p and absent or
closed with probability 1 — p where p isin (0,1).

@ Percolation corresponds to the existence of infinite connected
component.
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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.

@ Each edge is present or open with probability p and absent or
closed with probability 1 — p where p isin (0,1).

@ Percolation corresponds to the existence of infinite connected

component.
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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.

@ Each edge is present or open with probability p and absent or
closed with probability 1 — p where p isin (0,1).

@ Percolation corresponds to the existence of infinite connected
component.
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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.

@ Each edge is present or open with probability p and absent or
closed with probability 1 — p where p isin (0,1).

@ Percolation corresponds to the existence of infinite connected
component.

Figure: p=10.5
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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.

@ Each edge is present or open with probability p and absent or
closed with probability 1 — p where p isin (0,1).

@ Percolation corresponds to the existence of infinite connected
component.
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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.

@ Each edge is present or open with probability p and absent or
closed with probability 1 — p where p isin (0,1).

@ Percolation corresponds to the existence of infinite connected
component.

Figure: p=10.7
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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.

@ Each edge is present or open with probability p and absent or
closed with probability 1 — p where p isin (0,1).

@ Percolation corresponds to the existence of infinite connected
component.
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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.

@ Each edge is present or open with probability p and absent or
closed with probability 1 — p where p isin (0,1).

@ Percolation corresponds to the existence of infinite connected

component.
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Percolation

@ Consider the d-dimensional square lattice Z9 with nearest
neighbor edges.

@ Each edge is present or open with probability p and absent or
closed with probability 1 — p where p isin (0,1).

@ Percolation corresponds to the existence of infinite connected
component.

Figure: p=1.0
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Phase Transition

Phase transition at p:(2) = 1/2 on Z2:
@ if p < 1/2: no infinite cluster almost surely. (sub-critical)

@ if p > 1/2: one unique infinite cluster almost surely.
(super-critical)

@ if p=1/2: no infinite cluster almost surely. (critical)
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Phase Transition

Phase transition at p:(2) = 1/2 on Z2:
@ if p < 1/2: no infinite cluster almost surely. (sub-critical)

@ if p > 1/2: one unique infinite cluster almost surely.
(super-critical)

@ if p=1/2: no infinite cluster almost surely. (critical)

For every dimension d, p.(d) exists and is strictly in between 0
and 1.
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First-passage pecolation

@ Now consider the same lattice model where each edge e has
independent and identically distributed (i.i.d.) random
nonnegative weight w. from a fixed distribution F.
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First-passage pecolation

@ For any path P, define the passage time for P by

w(P) := Z We-

ecP
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First-passage pecolation

@ For two vertices x,y € Z9, the first-passage time a(x,y) is
defined as the minimum passage time over all paths from x to

y.
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Model

This was introduced by Hammersley and Welsh('65) to model the
flow of liquid through random media and it can be defined for any
connected graph G.
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Model

This was introduced by Hammersley and Welsh('65) to model the
flow of liquid through random media and it can be defined for any
connected graph G.

Figure: Cluster growth

Partha S. Dey First-passage percolation along lattice cylinders 5/27



Known results: Mean behavior

@ When the edge weights have finite mean, by subadditivity
.1
v(x) = lim =a(0, |nx|)

n—oo n

exists and is finite for all x € RY (HW'65).
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Known results: Mean behavior

@ When the edge weights have finite mean, by subadditivity

v(x) = lim la(O, | nx])

n—oo n

exists and is finite for all x € RY (HW'65).
Subadditivity: Let a, be a sequence of real numbers that

satisfies apym < a, + an, for all nym. Then lim,_ o a,/n
exists and equals inf,>1 a,/n.
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Known results: Mean behavior

@ When the edge weights have finite mean, by subadditivity

v(x) = lim la(O, | nx])

n—oo n

exists and is finite for all x € RY (HW'65).

Subadditivity: Let a, be a sequence of real numbers that
satisfies apym < a, + an, for all n;m. Then lim, o a,/n
exists and equals inf,>1 a,/n.

Proof: For any fixed integer m > 1 we have

an km am ar
n~ km+4+r m n
where n = km+r and 0 < r < m. Letting n — co we have

. dn . dm . . ~dn
limsup — < inf — < liminf —.
n m n
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Known results: Mean behavior

@ When the edge weights have finite mean, by subadditivity

V(x) = lim Sa(0, [nx))

n—oo n

exists and is finite for all x € RY (HW'65).

@ A shape theorem was proved by Cox and Durrett('81) which
says that for every small € > 0 and large enough t

-+|Uo

(1+e) BC —C(1+¢)B

a.s. where By = {x: a(0, |x]) <t} and B = {x:v(x) <1}.
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Known results: Mean behavior

@ When the edge weights have finite mean, by subadditivity

V(x) = lim Sa(0, [nx))

n—oo N

exists and is finite for all x € RY (HW'65).

@ A shape theorem was proved by Cox and Durrett('81) which
says that for every small € > 0 and large enough t

(1+¢e)BC

-+|Uo

C(1+¢)B
a.s. where By = {x: a(0, |x]) <t} and B = {x:v(x) <1}.

@ Kesten('86) proved that, v(x) > 0 iff P(we = 0) < pc(d)
where p.(d) is the critical probability for bond percolation in
A
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Mean behavior
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Known results: variance bounds
@ Bounds on Var(a(0, nx)) when P(we = 0) < pc(d):

@ lower bound of Q(log n) for d =2 (probabilistic arguments)
due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
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Known results: variance bounds
@ Bounds on Var(a(0, nx)) when P(we = 0) < pc(d):

@ lower bound of Q(log n) for d =2 (probabilistic arguments)
due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).

s upper bound of O(n/log n) for general d (hypercontractivity)
due to Benjamini, Kalai and Schramm('03).
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due to Benjamini, Kalai and Schramm('03).

o conjectured bound for d = 2, Var(a(0, nx)) ~ n?/3.
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Known results: variance bounds
@ Bounds on Var(a(0, nx)) when P(we = 0) < pc(d):

@ lower bound of Q(log n) for d =2 (probabilistic arguments)
due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).

s upper bound of O(n/log n) for general d (hypercontractivity)

due to Benjamini, Kalai and Schramm('03).

o conjectured bound for d = 2, Var(a(0, nx)) ~ n?/3.

@ When P(we = 0) = p.(d), the mean and variance of a(0, nx)
is of the order of log n and we have Gaussian limit as n — oo
(Chayes, Chayes and Durrett('86), and Newman and Zhang('97)).
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Known results: variance bounds
@ Bounds on Var(a(0, nx)) when P(we = 0) < pc(d):

@ lower bound of Q(log n) for d =2 (probabilistic arguments)
due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).

s upper bound of O(n/log n) for general d (hypercontractivity)

due to Benjamini, Kalai and Schramm('03).

o conjectured bound for d = 2, Var(a(0, nx)) ~ n?/3.

@ When P(we = 0) = p.(d), the mean and variance of a(0, nx)
is of the order of log n and we have Gaussian limit as n — oo
(Chayes, Chayes and Durrett('86), and Newman and Zhang('97)).

@ Nothing is known about the limiting distribution of a(0, nx)
when P(we = 0) < pc(d).

Partha S. Dey First-passage percolation along lattice cylinders

8/ 27



Predictions

@ Var(a(0, nx)) =~ n®X and the minimizing path deviates from
the straight line path joining 0 to nx by at most n¢ where y, ¢
depends only on d.
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Predictions

@ Var(a(0, nx)) =~ n®X and the minimizing path deviates from
the straight line path joining 0 to nx by at most n¢ where y, ¢
depends only on d.

@ The scaling relation (KPZ universality)

X =21

holds for all dimension d.
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Predictions

@ Var(a(0, nx)) =~ n®X and the minimizing path deviates from
the straight line path joining 0 to nx by at most n¢ where y, ¢
depends only on d.

@ The scaling relation (KPZ universality)
X =21
holds for all dimension d.
@ For d =2, it is predicted that, x =1/3 and £ =2/3. i.e,
Var(a(0, nx)) ~ n?/3

and the minimizing path is in Z x [—n?/3t¢ n?/3%¢] for any
€ > 0 according to the predictions.
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KPZ heuristics

~VnZ ¥ hZ~n+h?/2n
n?¢
— X = 20—-1=y.
2n
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Our result

Consider the first-passage time a,(h,) from 0 to (n,0,...,0) in
the graph Z x [—h,, h,]97.

Partha S. Dey First-passage percolation along lattice cylinders 11 /27



Our result

Consider the first-passage time a,(h,) from 0 to (n,0,...,0) in
the graph Z x [—h,, h,]97.

Theorem (Chatterjee and D. (2010))

Suppose P(we = 0) < pc(d) with all moments finite. Let h, be a
sequence of integers satisfying h, < n'/(9*1) Then we have

an(hn) — Elan(hy)]
Var(an(hn))

— Standard Gaussian as n — 0.

Partha S. Dey First-passage percolation along lattice cylinders 11 /27



Our result

Consider the first-passage time a,(h,) from 0 to (n,0,...,0) in
the graph Z x [—h,, h,]97.

Theorem (Chatterjee and D. (2010))

Suppose P(we = 0) < pc(d) with all moments finite. Let h, be a
sequence of integers satisfying h, < n*/(9+1) Then we have

an(hn) — Elan(hy)]

— Standard Gaussian as n — 0.
Var(an(hn))

In particular, in two-dimension, we have Gaussian Limit as long as
h, < n'/3,
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Moment bounds

@ We have, )
lim - E[an(hn)] = v(1,0,...,0)

n—o0

when h, — oo.
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Moment bounds

@ We have,
lim —E[an(h )] = v(1,0,...,0)

n—oo N
when h, — oo.

@ For all n, h,, we have

hd 7 < Var(an(hn)) < Cn

where ¢, C depends only on F and d.
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Moment bounds

@ We have,
lim —E[an(h )] = v(1,0,...,0)

n—oo N

when h, — oo.

@ For all n, h,, we have

hd 7 < Var(an(hs)) < Cn

where ¢, C depends only on F and d.

@ For all n, h,, we have
E[|as(hn) — E[an(hn)”k] < cn/?

where ¢ depends only on F and d.
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Fixed h case

Assume h, = h for all n for fixed h € (0, c0)

@ Both

u(h) = lim L Efan(h)] and 02(h) == lim * Var(as(h))

n—oco n n—oo n

exist and are positive for any non-degenerate distribution F on
[0,00), but their values depend on h, F.
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Fixed h case

Assume h, = h for all n for fixed h € (0, c0)

@ Both

NI H 1 2 NI H 1
wu(h) = nIL[r;O - E[a,(h)] and o(h) == "||_>rrgo - Var(an(h))
exist and are positive for any non-degenerate distribution F on
[0,00), but their values depend on h, F.

@ The scaled process {(no?(h))~Y/2(X(nt) — ntu(h))}e>0
converges in distribution to the standard Brownian motion as
n — oo where
X(n) = ap(h) for n>1

and extended by linear interpolation.
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Take home message

Below the height threshold the first-passage time has Gaussian
fluctuation and Gaussianity breaks down at the height threshold. J
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Why the variance bounds are not tight?

@ Assume that the weight of the edge e is we = v2 where ve's
are standard Gaussian random variables.
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Why the variance bounds are not tight?

@ Assume that the weight of the edge e is we = v2 where ve's
are standard Gaussian random variables.

@ Taking f to be the first-passage time a(0, ne;) function we
have

f'
88 = v, - 1{edge e is in the minimizing path}.
Ve
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Why the variance bounds are not tight?

@ Assume that the weight of the edge e is we = v2 where ve's
are standard Gaussian random variables.
@ Taking f to be the first-passage time a(0, ne;) function we
have
of
8ve

@ Any L2 function f of gaussian variables can be expanded in
Hermite orthonormal basis as f = 32} >/, = CmHm and
by Parseval's identity we have

Var(f) = Zak

. - 1{edge e is in the minimizing path}.

k>1
where a2 = lemlh « Cm- Moreover we also have,
2 2
E[|Vf]T] = E kai
k>1
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Why the variance bounds are not tight?
o We have E[|Vf|?] = E[a(0, ne;)] = O(n) and thus

> " kai = O(n).

k>1
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Why the variance bounds are not tight?
o We have E[|Vf|?] = E[a(0, ne;)] = O(n) and thus

> " kai = O(n).

k>1

@ If one can show that the main contribution of Var(f) comes
from ai with k = kg then the variance will be of the order

n/ko.
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Why the variance bounds are not tight?
o We have E[|Vf|?] = E[a(0, ne;)] = O(n) and thus

> " kai = O(n).

k>1

@ If one can show that the main contribution of Var(f) comes
from ai with k = kg then the variance will be of the order

n/ko.
@ Using hypercontractivity one can prove that

ko > log hp,.
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Why the variance bounds are not tight?
o We have E[|Vf|?] = E[a(0, ne;)] = O(n) and thus
> " kai = O(n).
k>1

@ If one can show that the main contribution of Var(f) comes
from ai with k = kg then the variance will be of the order

n/ko.
@ Using hypercontractivity one can prove that

ko > log hp,.

@ Hence for h, — oo, a,(hy) is noise sensitive, which implies
that any constant level Fourier mass is negligible compared to
the variance.
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Why the variance bounds are not tight?
We have E[|Vf|?] = E[a(0, ne;)] = O(n) and thus

> " kai = O(n).

k>1

@ If one can show that the main contribution of Var(f) comes
from ai with k = kg then the variance will be of the order

n/ko.
Using hypercontractivity one can prove that

(]

ko > log hp,.

Hence for h, — 0o, a,(hy) is noise sensitive, which implies
that any constant level Fourier mass is negligible compared to
the variance.

(]

(]

The hardest part is to analyse the full spectrum.
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Simulation studies (Variance)

0.65,

o
@ 3
a o

Estimated value of y
o
(9]

0.45

0.35

0.3 . . . . .
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Values of p

Figure: Plot of estimated value of 7y vs. p for different values of « under
i.i.d. Bernoulli(p) data and the assumption that Var(a,(n®)) = O(nh; 7).
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Simulation studies (CLT)
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Figure: QQ plots based on simulation data for a,(n'/?) for n = 3000
against normal distribution for Bernoulli(p) edge weights, p = 0.6,0.7,
0.8,0.9 in clockwise direction starting from top left.
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Sketch of the proof: d =2 and h, < n®

h h
0 0
—h —h

0 n=ml o

o Let n= ml with | ~ n? and m ~ n*=% with h, < I.
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Sketch of the proof: d =2 and h, < n®

h h
0 D 0
—h —h

0 / e n=ml o0

2
o Let n= ml with | ~ n? and m ~ n*=% with h, < I.
@ Break [0, n] X [—hp, hp] into m blocks
Bi = [(i—1)1,il] x [—hp, hp] for 1 < i< m.

Partha S. Dey First-passage percolation along lattice cylinders 19 /27



Sketch of the proof: d =2 and h, < n®

h h
0 i 0
—h —h

oo}

0 | . n—ml

2
o Let n= ml with | ~ n? and m ~ n*=% with h, < I.
@ Break [0, n] X [—hp, hp] into m blocks
Bi = [(i—1)1,il] x [—hp, hp] for 1 < i< m.

@ Let X; be the minimum passage time over all paths joining
left boundary of B; to its right boundary inside the block B;.
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Sketch of the proof: d =2 and h, < n®

h h
0 i 0
—h —h

0 / e n=ml o0

2
o Let n= ml with | ~ n? and m ~ n*=% with h, < I.
@ Break [0, n] X [—hp, hp] into m blocks
Bi = [(i—1)1,il] x [—hp, hp] for 1 < i< m.

@ Let X; be the minimum passage time over all paths joining
left boundary of B; to its right boundary inside the block B;.

@ X;'s are independent for 1 </ < m with X; 4 T(/, hy) where
T(I,hp) := inf{w(P) : P is a path joining
left and right boundaries of [0, /] x [—hp, hn]}.
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Approximation as i.i.d. sum

i

@ We have
a,,(h,,) > X1+ X0+ X
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Approximation as i.i.d. sum

@ We have
a,,(h,,) > X1+ X0+ X

@ We also have
an(hn) < Xl +X2+Xm+z

where 7 is sum of all edge-weights in the left/right
boundaries of B;.
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Approximation as i.i.d. sum

@ We have
a,,(h,,) > X1+ X0+ X

@ We also have
an(hn) < Xl +X2+Xm+z

where 7 is sum of all edge-weights in the left/right
boundaries of B;.

anlhe) — Blan(ha)]  C~ X — B[]
Var(an(hn)) Z Var(an(hn))

2 __4E(Z7]
= Var(a,(hp))

i=1
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Approximation as i.i.d. sum (contd.)
o Now E[Z?] = O((mh,)?) and Var(an(h,)) = Q(n/hy).
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Approximation as i.i.d. sum (contd.)
o Now E[Z?] = O((mh,)?) and Var(an(h,)) = Q(n/hy).

@ Thus a,(h,) is approximately a sum of i.i.d. random variables
when

E[Z°] ~ (mh,)? < n/h, < Var(an(hn))
or3a<1-2(1-p8)=25—-1.
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Approximation as i.i.d. sum (contd.)
o Now E[Z?] = O((mh,)?) and Var(an(h,)) = Q(n/hy).

@ Thus a,(h,) is approximately a sum of i.i.d. random variables
when

E[Z°] ~ (mh,)? < n/h, < Var(an(hn))
or3a<1-2(1-p8)=25—-1.

@ Using Lyapounov's condition, CLT holds for X; + --- 4+ Xp,

when
mE|X; — E[Xi]|*

(mVar(X))<2 o(1).
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Central Limit Theorem upto n'/> (h, < n® m = n*~")

@ Using moment upper bound we have

mE | X, — E[Xq]|¥ < const x m x [K/2

cons — 5

(mVar(Xl))k/z - ml k/2
hn

and this is small when

k—2
he/? < mk/2= 1ora<T(1—ﬁ)
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Central Limit Theorem upto n'/> (h, < n® m = n*~")

@ Using moment upper bound we have

mE | X, — E[Xq]|¥ < const x m x [K/2

cons — Y75

(mVar(Xl))k/z - ml k/2
o

and this is small when
k—2
he? < mk/2 1 or o < T(1—5)

@ We also need to satisfy

3a <26 —1.
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Central Limit Theorem upto n'/> (h, < n® m = n*~")

@ Using moment upper bound we have

mE | X, — E[Xq]|¥ < const x m x [K/2

cons — Y75

(mVar(Xl))k/z - ml k/2
o

and this is small when

k—2
k/2<<mk/2 10ra<T(1_5)

@ We also need to satisfy
3a <25 — 1.
@ Taking 3 =4/5 and k large we have CLT for a,(h,) when

h, < n'/>.
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Additive moment bound

@ Note that when / = myh we have
| T(/, h) ZT by ha)[* = O((m2hy)*)

where T;'s are i.i.d.
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Additive moment bound

@ Note that when / = myh we have
| T(/, h) ZT by ha)[* = O((m2hy)*)

where T;'s are i.i.d.

@ Moreover, by Rosenthal’s inequality we have, for i.i.d. mean
zero random variables Xi,..., Xy, k > 2,

E[| X1 + - + Xm[¥] < Ce max{m"/2 - B[X?¥/2 m - E[|X|“]}.
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Additive moment bound

@ Note that when / = myh we have
| T(/, h) ZT by ha)[* = O((m2hy)*)

where T;'s are i.i.d.

@ Moreover, by Rosenthal’s inequality we have, for i.i.d. mean
zero random variables Xi,..., Xy, k > 2,

E[| X1 + - + Xm[¥] < Ce max{m"/2 - B[X?¥/2 m - E[|X|“]}.

@ The previous bound was using the fact that

E[[X + -+ Xml] < G m*2 - E[X]"].
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Renormalization

@ Each X; has the same properties as the variable a,(h,). Using
this self-similarity upto two level with / =~ n’/8, |, ~ n®/* one
can prove CLT for h, = o(n®) with a < 7.

@ The values of /; are optimal values for 3 inequalities.
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Renormalization

@ Each X; has the same properties as the variable a,(h,). Using
this self-similarity upto two level with / =~ n’/8, |, ~ n®/* one

can prove CLT for h, = o(n®) with a < 7.
@ The values of [; are optimal values for 3 inequalities.

@ Using t level splitting with

gl 1 fri=12....¢
log n 3t +2

we have CLT for h, = o(n®) with o < 5.
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Renormalization

@ Each X; has the same properties as the variable a,(h,). Using
this self-similarity upto two level with / =~ n’/8, |, ~ n®/* one
can prove CLT for h, = o(n®) with a < 7.

@ The values of [; are optimal values for 3 inequalities.
@ Using t level splitting with

logh 1
IognN 3t +2

fori=1,2,...,t

we have CLT for h, = o(n®) with o < 5.

@ Thus taking t large enough, we have CLT for h, = o(n®) with
a<1/3.
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Why should CLT hold upto n?*3 in 2-dimension

@ Let's look at at the error terms in the proof of CLT. Recall
that n = ml with | ~ n®, h, = o(n®) and each sub-block has
size | X h,.
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Why should CLT hold upto n?*3 in 2-dimension

@ Let's look at at the error terms in the proof of CLT. Recall
that n = ml with | ~ n®, h, = o(n®) and each sub-block has
size | X h,.

- Let the variance lower bound be Q(//h}) for h, “small”.
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@ Let's look at at the error terms in the proof of CLT. Recall
that n = ml with | ~ n®, h, = o(n®) and each sub-block has
size | X h,.

- Let the variance lower bound be Q(//h}) for h, “small”.

- Let the vertical fluctuation within each sub-block be ~ h2/I.
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Why should CLT hold upto n?*3 in 2-dimension

@ Let's look at at the error terms in the proof of CLT. Recall
that n = ml with | ~ n®, h, = o(n®) and each sub-block has

size | X h,.
- Let the variance lower bound be Q(//h}) for h, “small”.

- Let the vertical fluctuation within each sub-block be ~ h2/I.

@ For the i.i.d. sum approximation to hold we need

m h—?’<<\/m L
/ hpy

20 —B+2a—-p)<1—-p+8—9a
_48-1
“S Ty
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Why should CLT hold upto n?*3 in 2-dimension

@ Let's look at at the error terms in the proof of CLT. Recall
that n = ml with | ~ n®, h, = o(n®) and each sub-block has
size | X h,.

- Let the variance lower bound be Q(//h}) for h, “small”.

- Let the vertical fluctuation within each sub-block be ~ h2/I.

@ For the i.i.d. sum approximation to hold we need

m h—?’<<\/m L
/ hpy

20 —B+2a—-p)<1—-p+8—9a
<4,6’—1
a .

o For v = 1/2, taking 8 ~ 1 we have CLT upto o(n*/3).
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Why should CLT hold upto n?*3 in 2-dimension

@ Let's look at at the error terms in the proof of CLT. Recall
that n = ml with | ~ n®, h, = o(n®) and each sub-block has

size | X h,.
- Let the variance lower bound be Q(//h}) for h, “small”.

- Let the vertical fluctuation within each sub-block be ~ h2/I.

@ For the i.i.d. sum approximation to hold we need

m h—?’<<\/m L
/ hpy

20 —B+2a—-p)<1—-p+8—9a
48 — 1
4+

o <

o For v = 1/2, taking 8 ~ 1 we have CLT upto o(n*/3).
@ In our proof, we used v = 1 and vertical fluctuation h,,.
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Ongoing work

@ For d = 2, prove that
Var(an(hy)) = O(nhy*'?)

and the CLT holds for h, < n?/3.
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Ongoing work
@ For d = 2, prove that
Var(an(hy)) = O(nhy*'?)
and the CLT holds for h, < n?/3.

o Note that (d +1)~! — 0 as d — oc. Derive a bound
uniformly away from zero for high enough d. The variance is
expected to behave like nh™2 above a critical dimension.
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Ongoing work
@ For d = 2, prove that
Var(an(hy)) = O(nhy*'?)
and the CLT holds for h, < n?/3.

o Note that (d +1)~! — 0 as d — oc. Derive a bound
uniformly away from zero for high enough d. The variance is
expected to behave like nh™2 above a critical dimension.

@ For oriented case we have a limiting Tracy Widom
distribution. However for semi-directed paths our method
gives a Gaussian CLT. Understanding the transition is open.
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Ongoing work

@ For d = 2, prove that
Var(an(hy)) = O(nhy*'?)
and the CLT holds for h, < n?/3.

o Note that (d +1)~! — 0 as d — oc. Derive a bound
uniformly away from zero for high enough d. The variance is
expected to behave like nh™2 above a critical dimension.

@ For oriented case we have a limiting Tracy Widom
distribution. However for semi-directed paths our method
gives a Gaussian CLT. Understanding the transition is open.

@ Other works: long-range first-passage percolation with
multiple phase transition. Invariant measures for nonlinear
Schrodinger equation.
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Thank you!
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