First-passage percolation along lattice cylinders

Partha S. Dey

Courant Institute of Mathematical Sciences, NYU

Saha Institute of Nuclear Physics, RFA Colloquium
January 21, 2011

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Figure: $p=0.1$

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Figure: $p=0.2$

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Figure: $p=0.3$

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Figure: $p=0.4$

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Figure: $p=0.5$

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Figure: $p=0.6$

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Figure: $p=0.7$

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Figure: $p=0.8$

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Figure: $p=0.9$

Percolation

- Consider the d-dimensional square lattice \mathbb{Z}^{d} with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability $1-p$ where p is in $(0,1)$.
- Percolation corresponds to the existence of infinite connected component.

Figure: $p=1.0$

Phase Transition

Phase transition at $p_{c}(2)=1 / 2$ on \mathbb{Z}^{2} :

- if $p<1 / 2$: no infinite cluster almost surely. (sub-critical)
- if $p>1 / 2$: one unique infinite cluster almost surely. (super-critical)
- if $p=1 / 2$: no infinite cluster almost surely. (critical)

Phase Transition

Phase transition at $p_{c}(2)=1 / 2$ on \mathbb{Z}^{2} :

- if $p<1 / 2$: no infinite cluster almost surely. (sub-critical)
- if $p>1 / 2$: one unique infinite cluster almost surely. (super-critical)
- if $p=1 / 2$: no infinite cluster almost surely. (critical)

For every dimension $d, p_{c}(d)$ exists and is strictly in between 0 and 1.

First-passage pecolation

- Now consider the same lattice model where each edge e has independent and identically distributed (i.i.d.) random nonnegative weight ω_{e} from a fixed distribution F.

First-passage pecolation

- For any path \mathcal{P}, define the passage time for \mathcal{P} by

$$
\omega(\mathcal{P}):=\sum_{e \in \mathcal{P}} \omega_{e} .
$$

First-passage pecolation

- For two vertices $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^{d}$, the first-passage time $a(\mathbf{x}, \mathbf{y})$ is defined as the minimum passage time over all paths from \mathbf{x} to y.

Model

This was introduced by Hammersley and Welsh('65) to model the flow of liquid through random media and it can be defined for any connected graph G.

Model

This was introduced by Hammersley and Welsh('65) to model the flow of liquid through random media and it can be defined for any connected graph G.

Figure: Cluster growth

Known results: Mean behavior

- When the edge weights have finite mean, by subadditivity

$$
\nu(\mathbf{x})=\lim _{n \rightarrow \infty} \frac{1}{n} a(\mathbf{0},\lfloor n \mathbf{x}\rfloor)
$$

exists and is finite for all $\mathbf{x} \in \mathbb{R}^{d}$ (HW'65).

Known results: Mean behavior

- When the edge weights have finite mean, by subadditivity

$$
\nu(\mathbf{x})=\lim _{n \rightarrow \infty} \frac{1}{n} a(\mathbf{0},\lfloor n \mathbf{x}\rfloor)
$$

exists and is finite for all $\mathbf{x} \in \mathbb{R}^{d}$ (HW'65).
Subadditivity: Let a_{n} be a sequence of real numbers that satisfies $a_{n+m} \leq a_{n}+a_{m}$ for all n, m. Then $\lim _{n \rightarrow \infty} a_{n} / n$ exists and equals $\inf _{n \geq 1} a_{n} / n$.

Known results: Mean behavior

- When the edge weights have finite mean, by subadditivity

$$
\nu(\mathbf{x})=\lim _{n \rightarrow \infty} \frac{1}{n} a(\mathbf{0},\lfloor n \mathbf{x}\rfloor)
$$

exists and is finite for all $\mathbf{x} \in \mathbb{R}^{d}$ (HW'65).
Subadditivity: Let a_{n} be a sequence of real numbers that satisfies $a_{n+m} \leq a_{n}+a_{m}$ for all n, m. Then $\lim _{n \rightarrow \infty} a_{n} / n$ exists and equals $\inf _{n \geq 1} a_{n} / n$.
Proof: For any fixed integer $m \geq 1$ we have

$$
\frac{a_{n}}{n} \leq \frac{k m}{k m+r} \cdot \frac{a_{m}}{m}+\frac{a_{r}}{n}
$$

where $n=k m+r$ and $0 \leq r<m$. Letting $n \rightarrow \infty$ we have

$$
\lim \sup \frac{a_{n}}{n} \leq \inf \frac{a_{m}}{m} \leq \liminf \frac{a_{n}}{n}
$$

Known results: Mean behavior

- When the edge weights have finite mean, by subadditivity

$$
\nu(\mathbf{x})=\lim _{n \rightarrow \infty} \frac{1}{n} a(\mathbf{0},\lfloor n \mathbf{x}\rfloor)
$$

exists and is finite for all $\mathbf{x} \in \mathbb{R}^{d}$ (HW'65).

- A shape theorem was proved by Cox and Durrett('81) which says that for every small $\varepsilon>0$ and large enough t

$$
(1+\varepsilon) B \subseteq \frac{B_{t}}{t} \subseteq(1+\varepsilon) B
$$

a.s. where $B_{t}=\{\mathbf{x}: a(\mathbf{0},\lfloor\mathbf{x}\rfloor) \leq t\}$ and $B=\{\mathbf{x}: \nu(\mathbf{x}) \leq 1\}$.

Known results: Mean behavior

- When the edge weights have finite mean, by subadditivity

$$
\nu(\mathbf{x})=\lim _{n \rightarrow \infty} \frac{1}{n} a(\mathbf{0},\lfloor n \mathbf{x}\rfloor)
$$

exists and is finite for all $\mathbf{x} \in \mathbb{R}^{d}$ (HW'65).

- A shape theorem was proved by Cox and Durrett('81) which says that for every small $\varepsilon>0$ and large enough t

$$
(1+\varepsilon) B \subseteq \frac{B_{t}}{t} \subseteq(1+\varepsilon) B
$$

a.s. where $B_{t}=\{\mathbf{x}: a(\mathbf{0},\lfloor\mathbf{x}\rfloor) \leq t\}$ and $B=\{\mathbf{x}: \nu(\mathbf{x}) \leq 1\}$.

- Kesten('86) proved that, $\nu(\mathbf{x})>0$ iff $\mathbb{P}\left(\omega_{e}=0\right)<p_{c}(d)$ where $p_{c}(d)$ is the critical probability for bond percolation in \mathbb{Z}^{d}.

Mean behavior

Partha S. Dey

Known results: variance bounds

- Bounds on $\operatorname{Var}(a(\mathbf{0}, n \mathbf{x}))$ when $\mathbb{P}\left(\omega_{e}=0\right)<p_{c}(d)$:
- lower bound of $\Omega(\log n)$ for $d=2$ (probabilistic arguments) due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).

Known results: variance bounds

- Bounds on $\operatorname{Var}(a(\mathbf{0}, n \mathbf{x}))$ when $\mathbb{P}\left(\omega_{e}=0\right)<p_{c}(d)$:
- lower bound of $\Omega(\log n)$ for $d=2$ (probabilistic arguments) due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
- upper bound of $O(n / \log n)$ for general d (hypercontractivity) due to Benjamini, Kalai and Schramm('03).

Known results: variance bounds

- Bounds on $\operatorname{Var}(a(\mathbf{0}, n \mathbf{x}))$ when $\mathbb{P}\left(\omega_{e}=0\right)<p_{c}(d)$:
- lower bound of $\Omega(\log n)$ for $d=2$ (probabilistic arguments) due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
- upper bound of $O(n / \log n)$ for general d (hypercontractivity) due to Benjamini, Kalai and Schramm('03).
- conjectured bound for $d=2, \operatorname{Var}(a(\mathbf{0}, n \mathbf{x})) \approx n^{2 / 3}$.

Known results: variance bounds

- Bounds on $\operatorname{Var}(a(\mathbf{0}, n \mathbf{x}))$ when $\mathbb{P}\left(\omega_{e}=0\right)<p_{c}(d)$:
- lower bound of $\Omega(\log n)$ for $d=2$ (probabilistic arguments) due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
- upper bound of $O(n / \log n)$ for general d (hypercontractivity) due to Benjamini, Kalai and Schramm('03).
- conjectured bound for $d=2, \operatorname{Var}(a(\mathbf{0}, n \mathbf{x})) \approx n^{2 / 3}$.
- When $\mathbb{P}\left(\omega_{e}=0\right)=p_{c}(d)$, the mean and variance of $a(\mathbf{0}, n \mathbf{x})$ is of the order of $\log n$ and we have Gaussian limit as $n \rightarrow \infty$ (Chayes, Chayes and Durrett('86), and Newman and Zhang('97)).

Known results: variance bounds

- Bounds on $\operatorname{Var}(a(\mathbf{0}, n \mathbf{x}))$ when $\mathbb{P}\left(\omega_{e}=0\right)<p_{c}(d)$:
- lower bound of $\Omega(\log n)$ for $d=2$ (probabilistic arguments) due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
- upper bound of $O(n / \log n)$ for general d (hypercontractivity) due to Benjamini, Kalai and Schramm('03).
- conjectured bound for $d=2, \operatorname{Var}(a(\mathbf{0}, n \mathbf{x})) \approx n^{2 / 3}$.
- When $\mathbb{P}\left(\omega_{e}=0\right)=p_{c}(d)$, the mean and variance of $a(\mathbf{0}, n \mathbf{x})$ is of the order of $\log n$ and we have Gaussian limit as $n \rightarrow \infty$ (Chayes, Chayes and Durrett('86), and Newman and Zhang('97)).
- Nothing is known about the limiting distribution of $a(\mathbf{0}, n \mathbf{x})$ when $\mathbb{P}\left(\omega_{e}=0\right)<p_{c}(d)$.

Predictions

- $\operatorname{Var}(a(\mathbf{0}, n \mathbf{x})) \approx n^{2 \chi}$ and the minimizing path deviates from the straight line path joining $\mathbf{0}$ to $n \mathbf{x}$ by at most n^{ξ} where χ, ξ depends only on d.

Predictions

- $\operatorname{Var}(a(\mathbf{0}, n \mathbf{x})) \approx n^{2 \chi}$ and the minimizing path deviates from the straight line path joining $\mathbf{0}$ to $n \mathbf{x}$ by at most n^{ξ} where χ, ξ depends only on d.
- The scaling relation (KPZ universality)

$$
\chi=2 \xi-1
$$

holds for all dimension d.

Predictions

- $\operatorname{Var}(a(\mathbf{0}, n \mathbf{x})) \approx n^{2 \chi}$ and the minimizing path deviates from the straight line path joining $\mathbf{0}$ to $n \mathbf{x}$ by at most n^{ξ} where χ, ξ depends only on d.
- The scaling relation (KPZ universality)

$$
\chi=2 \xi-1
$$

holds for all dimension d.

- For $d=2$, it is predicted that, $\chi=1 / 3$ and $\xi=2 / 3$. i.e.,

$$
\operatorname{Var}(a(\mathbf{0}, n \mathbf{x})) \approx n^{2 / 3}
$$

and the minimizing path is in $\mathbb{Z} \times\left[-n^{2 / 3+\varepsilon}, n^{2 / 3+\varepsilon}\right]$ for any $\varepsilon>0$ according to the predictions.

KPZ heuristics

$$
\frac{n^{2 \xi}}{2 n} \approx n^{\chi} \Longrightarrow 2 \xi-1=\chi
$$

Our result

Consider the first-passage time $a_{n}\left(h_{n}\right)$ from $\mathbf{0}$ to $(n, 0, \ldots, 0)$ in the graph $\mathbb{Z} \times\left[-h_{n}, h_{n}\right]^{d-1}$.

Our result

Consider the first-passage time $a_{n}\left(h_{n}\right)$ from $\mathbf{0}$ to $(n, 0, \ldots, 0)$ in the graph $\mathbb{Z} \times\left[-h_{n}, h_{n}\right]^{d-1}$.

Theorem (Chatterjee and D. (2010))

Suppose $\mathbb{P}\left(\omega_{e}=0\right)<p_{c}(d)$ with all moments finite. Let h_{n} be a sequence of integers satisfying $h_{n} \ll n^{1 /(d+1)}$. Then we have

$$
\frac{a_{n}\left(h_{n}\right)-\mathbb{E}\left[a_{n}\left(h_{n}\right)\right]}{\sqrt{\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)}} \Longrightarrow \text { Standard Gaussian as } n \rightarrow \infty .
$$

Our result

Consider the first-passage time $a_{n}\left(h_{n}\right)$ from $\mathbf{0}$ to $(n, 0, \ldots, 0)$ in the graph $\mathbb{Z} \times\left[-h_{n}, h_{n}\right]^{d-1}$.

Theorem (Chatterjee and D. (2010))

Suppose $\mathbb{P}\left(\omega_{e}=0\right)<p_{c}(d)$ with all moments finite. Let h_{n} be a sequence of integers satisfying $h_{n} \ll n^{1 /(d+1)}$. Then we have

$$
\frac{a_{n}\left(h_{n}\right)-\mathbb{E}\left[a_{n}\left(h_{n}\right)\right]}{\sqrt{\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)}} \Longrightarrow \text { Standard Gaussian as } n \rightarrow \infty .
$$

In particular, in two-dimension, we have Gaussian Limit as long as $h_{n} \ll n^{1 / 3}$.

Moment bounds

- We have,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[a_{n}\left(h_{n}\right)\right]=\nu(1,0, \ldots, 0)
$$

when $h_{n} \rightarrow \infty$.

Moment bounds

- We have,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[a_{n}\left(h_{n}\right)\right]=\nu(1,0, \ldots, 0)
$$

when $h_{n} \rightarrow \infty$.

- For all n, h_{n}, we have

$$
\frac{c n}{h_{n}^{d-1}} \leq \operatorname{Var}\left(a_{n}\left(h_{n}\right)\right) \leq C n
$$

where c, C depends only on F and d.

Moment bounds

- We have,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[a_{n}\left(h_{n}\right)\right]=\nu(1,0, \ldots, 0)
$$

when $h_{n} \rightarrow \infty$.

- For all n, h_{n}, we have

$$
\frac{c n}{h_{n}^{d-1}} \leq \operatorname{Var}\left(a_{n}\left(h_{n}\right)\right) \leq C n
$$

where c, C depends only on F and d.

- For all n, h_{n}, we have

$$
\mathbb{E}\left[\left|a_{n}\left(h_{n}\right)-\mathbb{E}\left[a_{n}\left(h_{n}\right)\right]\right|^{k}\right] \leq c n^{k / 2}
$$

where c depends only on F and d.

Fixed h case

Assume $h_{n}=h$ for all n for fixed $h \in(0, \infty)$

- Both

$$
\mu(h):=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[a_{n}(h)\right] \text { and } \sigma^{2}(h):=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Var}\left(a_{n}(h)\right)
$$

exist and are positive for any non-degenerate distribution F on $[0, \infty)$, but their values depend on h, F.

Fixed h case

Assume $h_{n}=h$ for all n for fixed $h \in(0, \infty)$

- Both

$$
\mu(h):=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[a_{n}(h)\right] \text { and } \sigma^{2}(h):=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Var}\left(a_{n}(h)\right)
$$

exist and are positive for any non-degenerate distribution F on $[0, \infty)$, but their values depend on h, F.

- The scaled process $\left\{\left(n \sigma^{2}(h)\right)^{-1 / 2}(X(n t)-n t \mu(h))\right\}_{t \geq 0}$ converges in distribution to the standard Brownian motion as $n \rightarrow \infty$ where

$$
X(n)=a_{n}(h) \text { for } n \geq 1
$$

and extended by linear interpolation.

Take home message

Below the height threshold the first-passage time has Gaussian fluctuation and Gaussianity breaks down at the height threshold.

Why the variance bounds are not tight?

- Assume that the weight of the edge e is $\omega_{e}=v_{e}^{2}$ where v_{e} 's are standard Gaussian random variables.

Why the variance bounds are not tight?

- Assume that the weight of the edge e is $\omega_{e}=v_{e}^{2}$ where v_{e} 's are standard Gaussian random variables.
- Taking f to be the first-passage time $a\left(\mathbf{0}, n \mathbf{e}_{1}\right)$ function we have

$$
\frac{\partial f}{\partial v_{e}}=v_{e} \cdot \mathbb{1}\{\text { edge } e \text { is in the minimizing path }\}
$$

Why the variance bounds are not tight?

- Assume that the weight of the edge e is $\omega_{e}=v_{e}^{2}$ where v_{e} 's are standard Gaussian random variables.
- Taking f to be the first-passage time $a\left(\mathbf{0}, n \mathbf{e}_{1}\right)$ function we have

$$
\frac{\partial f}{\partial v_{e}}=v_{e} \cdot \mathbb{1}\{\text { edge } e \text { is in the minimizing path }\}
$$

- Any L^{2} function f of gaussian variables can be expanded in Hermite orthonormal basis as $f=\sum_{k=0}^{\infty} \sum_{\|\mathbf{m}\|_{1}=k} c_{\mathbf{m}} \tilde{H}_{\mathbf{m}}$ and by Parseval's identity we have

$$
\operatorname{Var}(f)=\sum_{k \geq 1} a_{k}^{2}
$$

where $a_{k}^{2}=\sum_{\|\mathbf{m}\|_{1}=k} c_{\boldsymbol{m}}^{2}$. Moreover we also have,

$$
\mathbb{E}\left[|\nabla f|^{2}\right]=\sum_{k \geq 1} k a_{k}^{2}
$$

Why the variance bounds are not tight?

- We have $\mathbb{E}\left[|\nabla f|^{2}\right]=\mathbb{E}\left[a\left(\mathbf{0}, n \mathbf{e}_{1}\right)\right]=O(n)$ and thus

$$
\sum_{k \geq 1} k a_{k}^{2}=O(n)
$$

Why the variance bounds are not tight?

- We have $\mathbb{E}\left[|\nabla f|^{2}\right]=\mathbb{E}\left[a\left(\mathbf{0}, n \mathbf{e}_{1}\right)\right]=O(n)$ and thus

$$
\sum_{k \geq 1} k a_{k}^{2}=O(n)
$$

- If one can show that the main contribution of $\operatorname{Var}(f)$ comes from a_{k}^{2} with $k \approx k_{0}$ then the variance will be of the order n / k_{0}.

Why the variance bounds are not tight?

- We have $\mathbb{E}\left[|\nabla f|^{2}\right]=\mathbb{E}\left[a\left(\mathbf{0}, n \mathbf{e}_{1}\right)\right]=O(n)$ and thus

$$
\sum_{k \geq 1} k a_{k}^{2}=O(n)
$$

- If one can show that the main contribution of $\operatorname{Var}(f)$ comes from a_{k}^{2} with $k \approx k_{0}$ then the variance will be of the order n / k_{0}.
- Using hypercontractivity one can prove that

$$
k_{0} \geq \log h_{n}
$$

Why the variance bounds are not tight?

- We have $\mathbb{E}\left[|\nabla f|^{2}\right]=\mathbb{E}\left[a\left(\mathbf{0}, n \mathbf{e}_{1}\right)\right]=O(n)$ and thus

$$
\sum_{k \geq 1} k a_{k}^{2}=O(n)
$$

- If one can show that the main contribution of $\operatorname{Var}(f)$ comes from a_{k}^{2} with $k \approx k_{0}$ then the variance will be of the order n / k_{0}.
- Using hypercontractivity one can prove that

$$
k_{0} \geq \log h_{n}
$$

- Hence for $h_{n} \rightarrow \infty, a_{n}\left(h_{n}\right)$ is noise sensitive, which implies that any constant level Fourier mass is negligible compared to the variance.

Why the variance bounds are not tight?

- We have $\mathbb{E}\left[|\nabla f|^{2}\right]=\mathbb{E}\left[a\left(\mathbf{0}, n \mathbf{e}_{1}\right)\right]=O(n)$ and thus

$$
\sum_{k \geq 1} k a_{k}^{2}=O(n)
$$

- If one can show that the main contribution of $\operatorname{Var}(f)$ comes from a_{k}^{2} with $k \approx k_{0}$ then the variance will be of the order n / k_{0}.
- Using hypercontractivity one can prove that

$$
k_{0} \geq \log h_{n}
$$

- Hence for $h_{n} \rightarrow \infty, a_{n}\left(h_{n}\right)$ is noise sensitive, which implies that any constant level Fourier mass is negligible compared to the variance.
- The hardest part is to analyse the full spectrum.

Simulation studies (Variance)

Figure: Plot of estimated value of γ vs. p for different values of α under i.i.d. Bernoulli (p) data and the assumption that $\operatorname{Var}\left(a_{n}\left(n^{\alpha}\right)\right)=O\left(n h_{n}^{-\gamma}\right)$.

Simulation studies (CLT)

Figure: $Q Q$ plots based on simulation data for $a_{n}\left(n^{1 / 2}\right)$ for $n=3000$ against normal distribution for Bernoulli(p) edge weights, $p=0.6,0.7$, $0.8,0.9$ in clockwise direction starting from top left.

Sketch of the proof: $d=2$ and $h_{n} \ll n^{\alpha}$

- Let $n=m /$ with $I \approx n^{\beta}$ and $m \approx n^{1-\beta}$ with $h_{n} \ll I$.

Sketch of the proof: $d=2$ and $h_{n} \ll n^{\alpha}$

- Let $n=m /$ with $I \approx n^{\beta}$ and $m \approx n^{1-\beta}$ with $h_{n} \ll I$.
- Break $[0, n] \times\left[-h_{n}, h_{n}\right]$ into m blocks

$$
B_{i}=[(i-1) /, i l] \times\left[-h_{n}, h_{n}\right] \text { for } 1 \leq i \leq m .
$$

Sketch of the proof: $d=2$ and $h_{n} \ll n^{\alpha}$

- Let $n=m /$ with $I \approx n^{\beta}$ and $m \approx n^{1-\beta}$ with $h_{n} \ll I$.
- Break $[0, n] \times\left[-h_{n}, h_{n}\right]$ into m blocks

$$
B_{i}=[(i-1) /, i l] \times\left[-h_{n}, h_{n}\right] \text { for } 1 \leq i \leq m .
$$

- Let X_{i} be the minimum passage time over all paths joining left boundary of B_{i} to its right boundary inside the block B_{i}.

Sketch of the proof: $d=2$ and $h_{n} \ll n^{\alpha}$

- Let $n=m /$ with $I \approx n^{\beta}$ and $m \approx n^{1-\beta}$ with $h_{n} \ll I$.
- Break $[0, n] \times\left[-h_{n}, h_{n}\right]$ into m blocks

$$
B_{i}=[(i-1) /, i l] \times\left[-h_{n}, h_{n}\right] \text { for } 1 \leq i \leq m .
$$

- Let X_{i} be the minimum passage time over all paths joining left boundary of B_{i} to its right boundary inside the block B_{i}.
- X_{i} 's are independent for $1 \leq i \leq m$ with $X_{i} \stackrel{\text { d }}{=} T\left(I, h_{n}\right)$ where $T\left(I, h_{n}\right):=\inf \{\omega(\mathcal{P}): \mathcal{P}$ is a path joining left and right boundaries of $\left.[0, I] \times\left[-h_{n}, h_{n}\right]\right\}$.

Approximation as i.i.d. sum

- We have

$$
a_{n}\left(h_{n}\right) \geq X_{1}+X_{2}+\cdots X_{m}
$$

Approximation as i.i.d. sum

- We have

$$
a_{n}\left(h_{n}\right) \geq X_{1}+X_{2}+\cdots X_{m} .
$$

- We also have

$$
a_{n}\left(h_{n}\right) \leq X_{1}+X_{2}+\cdots X_{m}+Z
$$

where Z is sum of all edge-weights in the left/right boundaries of B_{i}.

Approximation as i.i.d. sum

- We have

$$
a_{n}\left(h_{n}\right) \geq X_{1}+X_{2}+\cdots X_{m} .
$$

- We also have

$$
a_{n}\left(h_{n}\right) \leq X_{1}+X_{2}+\cdots X_{m}+Z
$$

where Z is sum of all edge-weights in the left/right boundaries of B_{i}.

- $\mathbb{E}\left|\frac{a_{n}\left(h_{n}\right)-\mathbb{E}\left[a_{n}\left(h_{n}\right)\right]}{\sqrt{\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)}}-\sum_{i=1}^{m} \frac{X_{i}-\mathbb{E}\left[X_{i}\right]}{\sqrt{\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)}}\right|^{2} \leq \frac{4 \mathbb{E}\left[Z^{2}\right]}{\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)}$.

Approximation as i.i.d. sum (contd.)

- Now $\mathbb{E}\left[Z^{2}\right]=O\left(\left(m h_{n}\right)^{2}\right)$ and $\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)=\Omega\left(n / h_{n}\right)$.

Approximation as i.i.d. sum (contd.)

- Now $\mathbb{E}\left[Z^{2}\right]=O\left(\left(m h_{n}\right)^{2}\right)$ and $\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)=\Omega\left(n / h_{n}\right)$.
- Thus $a_{n}\left(h_{n}\right)$ is approximately a sum of i.i.d. random variables when

$$
\begin{aligned}
& \mathbb{E}\left[Z^{2}\right] \approx\left(m h_{n}\right)^{2} \ll n / h_{n} \leq \operatorname{Var}\left(a_{n}\left(h_{n}\right)\right) \\
& \quad \text { or } 3 \alpha \leq 1-2(1-\beta)=2 \beta-1
\end{aligned}
$$

Approximation as i.i.d. sum (contd.)

- Now $\mathbb{E}\left[Z^{2}\right]=O\left(\left(m h_{n}\right)^{2}\right)$ and $\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)=\Omega\left(n / h_{n}\right)$.
- Thus $a_{n}\left(h_{n}\right)$ is approximately a sum of i.i.d. random variables when

$$
\begin{gathered}
\mathbb{E}\left[Z^{2}\right] \approx\left(m h_{n}\right)^{2} \ll n / h_{n} \leq \operatorname{Var}\left(a_{n}\left(h_{n}\right)\right) \\
\quad \text { or } 3 \alpha \leq 1-2(1-\beta)=2 \beta-1
\end{gathered}
$$

- Using Lyapounov's condition, CLT holds for $X_{1}+\cdots+X_{m}$ when

$$
\frac{m \mathbb{E}\left|X_{1}-\mathbb{E}\left[X_{1}\right]\right|^{k}}{\left(m \operatorname{Var}\left(X_{1}\right)\right)^{k / 2}}=o(1)
$$

Central Limit Theorem upto $n^{1 / 5}\left(h_{n} \ll n^{\alpha}, m \approx n^{1-\beta}\right)$

- Using moment upper bound we have

$$
\frac{m \mathbb{E}\left|X_{1}-\mathbb{E}\left[X_{1}\right]\right|^{k}}{\left(m \operatorname{Var}\left(X_{1}\right)\right)^{k / 2}} \leq \text { const } \times \frac{m \times I^{k / 2}}{\left(\frac{m!}{h_{n}}\right)^{k / 2}}
$$

and this is small when

$$
h_{n}^{k / 2} \ll m^{k / 2-1} \text { or } \alpha \leq \frac{k-2}{k}(1-\beta) .
$$

Central Limit Theorem upto $n^{1 / 5}\left(h_{n} \ll n^{\alpha}, m \approx n^{1-\beta}\right)$

- Using moment upper bound we have

$$
\frac{m \mathbb{E}\left|X_{1}-\mathbb{E}\left[X_{1}\right]\right|^{k}}{\left(m \operatorname{Var}\left(X_{1}\right)\right)^{k / 2}} \leq \text { const } \times \frac{m \times I^{k / 2}}{\left(\frac{m /}{h_{n}}\right)^{k / 2}}
$$

and this is small when

$$
h_{n}^{k / 2} \ll m^{k / 2-1} \text { or } \alpha \leq \frac{k-2}{k}(1-\beta) .
$$

- We also need to satisfy

$$
3 \alpha \leq 2 \beta-1
$$

Central Limit Theorem upto $n^{1 / 5}\left(h_{n} \ll n^{\alpha}, m \approx n^{1-\beta}\right)$

- Using moment upper bound we have

$$
\frac{m \mathbb{E}\left|X_{1}-\mathbb{E}\left[X_{1}\right]\right|^{k}}{\left(m \operatorname{Var}\left(X_{1}\right)\right)^{k / 2}} \leq \text { const } \times \frac{m \times I^{k / 2}}{\left(\frac{m /}{h_{n}}\right)^{k / 2}}
$$

and this is small when

$$
h_{n}^{k / 2} \ll m^{k / 2-1} \text { or } \alpha \leq \frac{k-2}{k}(1-\beta) .
$$

- We also need to satisfy

$$
3 \alpha \leq 2 \beta-1
$$

- Taking $\beta=4 / 5$ and k large we have CLT for $a_{n}\left(h_{n}\right)$ when $h_{n} \ll n^{1 / 5}$.

Additive moment bound

- Note that when $I=m_{2} I_{2}$ we have

$$
\mathbb{E}\left|T\left(I, h_{n}\right)-\sum_{i=1}^{m_{2}} T_{i}\left(l_{2}, h_{n}\right)\right|^{k}=O\left(\left(m_{2} h_{n}\right)^{k}\right)
$$

where T_{i} 's are i.i.d.

Additive moment bound

- Note that when $I=m_{2} l_{2}$ we have

$$
\mathbb{E}\left|T\left(I, h_{n}\right)-\sum_{i=1}^{m_{2}} T_{i}\left(l_{2}, h_{n}\right)\right|^{k}=O\left(\left(m_{2} h_{n}\right)^{k}\right)
$$

where T_{i} 's are i.i.d.

- Moreover, by Rosenthal's inequality we have, for i.i.d. mean zero random variables $X_{1}, \ldots, X_{m}, k \geq 2$, $\mathbb{E}\left[\left|X_{1}+\cdots+X_{m}\right|^{k}\right] \leq C_{k} \max \left\{m^{k / 2} \cdot \mathbb{E}\left[X^{2}\right]^{k / 2}, m \cdot \mathbb{E}\left[|X|^{k}\right]\right\}$.

Additive moment bound

- Note that when $I=m_{2} I_{2}$ we have

$$
\mathbb{E}\left|T\left(I, h_{n}\right)-\sum_{i=1}^{m_{2}} T_{i}\left(l_{2}, h_{n}\right)\right|^{k}=O\left(\left(m_{2} h_{n}\right)^{k}\right)
$$

where T_{i} 's are i.i.d.

- Moreover, by Rosenthal's inequality we have, for i.i.d. mean zero random variables $X_{1}, \ldots, X_{m}, k \geq 2$,

$$
\mathbb{E}\left[\left|X_{1}+\cdots+X_{m}\right|^{k}\right] \leq C_{k} \max \left\{m^{k / 2} \cdot \mathbb{E}\left[X^{2}\right]^{k / 2}, m \cdot \mathbb{E}\left[|X|^{k}\right]\right\}
$$

- The previous bound was using the fact that

$$
\mathbb{E}\left[\left|X_{1}+\cdots+X_{m}\right|^{k}\right] \leq C_{k}^{\prime} m^{k / 2} \cdot \mathbb{E}\left[|X|^{k}\right]
$$

Renormalization

- Each X_{i} has the same properties as the variable $a_{n}\left(h_{n}\right)$. Using this self-similarity upto two level with $I \approx n^{7 / 8}, I_{2} \approx n^{3 / 4}$ one can prove CLT for $h_{n}=o\left(n^{\alpha}\right)$ with $\alpha<\frac{1}{4}$.
- The values of I_{i} are optimal values for 3 inequalities.

Renormalization

- Each X_{i} has the same properties as the variable $a_{n}\left(h_{n}\right)$. Using this self-similarity upto two level with $I \approx n^{7 / 8}, l_{2} \approx n^{3 / 4}$ one can prove CLT for $h_{n}=o\left(n^{\alpha}\right)$ with $\alpha<\frac{1}{4}$.
- The values of l_{i} are optimal values for 3 inequalities.
- Using t level splitting with

$$
\frac{\log l_{i}}{\log n} \approx 1-\frac{i}{3 t+2} \text { for } i=1,2, \ldots, t
$$

we have CLT for $h_{n}=o\left(n^{\alpha}\right)$ with $\alpha<\frac{t}{3 t+2}$.

Renormalization

- Each X_{i} has the same properties as the variable $a_{n}\left(h_{n}\right)$. Using this self-similarity upto two level with $I \approx n^{7 / 8}, I_{2} \approx n^{3 / 4}$ one can prove CLT for $h_{n}=o\left(n^{\alpha}\right)$ with $\alpha<\frac{1}{4}$.
- The values of I_{i} are optimal values for 3 inequalities.
- Using t level splitting with

$$
\frac{\log l_{i}}{\log n} \approx 1-\frac{i}{3 t+2} \text { for } i=1,2, \ldots, t
$$

we have CLT for $h_{n}=o\left(n^{\alpha}\right)$ with $\alpha<\frac{t}{3 t+2}$.

- Thus taking t large enough, we have CLT for $h_{n}=o\left(n^{\alpha}\right)$ with $\alpha<1 / 3$.

Why should CLT hold upto $n^{2 / 3}$ in 2-dimension

- Let's look at at the error terms in the proof of CLT. Recall that $n=m I$ with $I \approx n^{\beta}, h_{n}=o\left(n^{\alpha}\right)$ and each sub-block has size $I \times h_{n}$.

Why should CLT hold upto $n^{2 / 3}$ in 2-dimension

- Let's look at at the error terms in the proof of CLT. Recall that $n=m l$ with $I \approx n^{\beta}, h_{n}=o\left(n^{\alpha}\right)$ and each sub-block has size $I \times h_{n}$.
- Let the variance lower bound be $\Omega\left(I / h_{n}^{\gamma}\right)$ for h_{n} "small".

Why should CLT hold upto $n^{2 / 3}$ in 2-dimension

- Let's look at at the error terms in the proof of CLT. Recall that $n=m l$ with $I \approx n^{\beta}, h_{n}=o\left(n^{\alpha}\right)$ and each sub-block has size $I \times h_{n}$.
- Let the variance lower bound be $\Omega\left(I / h_{n}^{\gamma}\right)$ for h_{n} "small".
- Let the vertical fluctuation within each sub-block be $\approx h_{n}^{2} / I$.

Why should CLT hold upto $n^{2 / 3}$ in 2-dimension

- Let's look at at the error terms in the proof of CLT. Recall that $n=m l$ with $I \approx n^{\beta}, h_{n}=o\left(n^{\alpha}\right)$ and each sub-block has size $I \times h_{n}$.
- Let the variance lower bound be $\Omega\left(I / h_{n}^{\gamma}\right)$ for h_{n} "small".
- Let the vertical fluctuation within each sub-block be $\approx h_{n}^{2} / I$.
- For the i.i.d. sum approximation to hold we need

$$
\begin{aligned}
m \cdot \frac{h_{n}^{2}}{l} & \ll \sqrt{m \cdot \frac{l}{h_{n}^{\gamma}}} \\
2(1-\beta+2 \alpha-\beta) & <1-\beta+\beta-\gamma \alpha \\
\alpha & <\frac{4 \beta-1}{4+\gamma} .
\end{aligned}
$$

Why should CLT hold upto $n^{2 / 3}$ in 2-dimension

- Let's look at at the error terms in the proof of CLT. Recall that $n=m l$ with $I \approx n^{\beta}, h_{n}=o\left(n^{\alpha}\right)$ and each sub-block has size $I \times h_{n}$.
- Let the variance lower bound be $\Omega\left(I / h_{n}^{\gamma}\right)$ for h_{n} "small".
- Let the vertical fluctuation within each sub-block be $\approx h_{n}^{2} / I$.
- For the i.i.d. sum approximation to hold we need

$$
\begin{aligned}
m \cdot \frac{h_{n}^{2}}{l} & \ll \sqrt{m \cdot \frac{l}{h_{n}^{\gamma}}} \\
2(1-\beta+2 \alpha-\beta) & <1-\beta+\beta-\gamma \alpha \\
\alpha & <\frac{4 \beta-1}{4+\gamma} .
\end{aligned}
$$

- For $\gamma=1 / 2$, taking $\beta \approx 1$ we have CLT upto $o\left(n^{2 / 3}\right)$.

Why should CLT hold upto $n^{2 / 3}$ in 2-dimension

- Let's look at at the error terms in the proof of CLT. Recall that $n=m l$ with $I \approx n^{\beta}, h_{n}=o\left(n^{\alpha}\right)$ and each sub-block has size $I \times h_{n}$.
- Let the variance lower bound be $\Omega\left(I / h_{n}^{\gamma}\right)$ for h_{n} "small".
- Let the vertical fluctuation within each sub-block be $\approx h_{n}^{2} / I$.
- For the i.i.d. sum approximation to hold we need

$$
\begin{aligned}
m \cdot \frac{h_{n}^{2}}{l} & \ll \sqrt{m \cdot \frac{l}{h_{n}^{\gamma}}} \\
2(1-\beta+2 \alpha-\beta) & <1-\beta+\beta-\gamma \alpha \\
\alpha & <\frac{4 \beta-1}{4+\gamma} .
\end{aligned}
$$

- For $\gamma=1 / 2$, taking $\beta \approx 1$ we have CLT upto $o\left(n^{2 / 3}\right)$.
- In our proof, we used $\gamma=1$ and vertical fluctuation h_{n}.

Ongoing work

- For $d=2$, prove that

$$
\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)=O\left(n h_{n}^{-1 / 2}\right)
$$

and the CLT holds for $h_{n} \ll n^{2 / 3}$.

Ongoing work

- For $d=2$, prove that

$$
\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)=O\left(n h_{n}^{-1 / 2}\right)
$$

and the CLT holds for $h_{n} \ll n^{2 / 3}$.

- Note that $(d+1)^{-1} \rightarrow 0$ as $d \rightarrow \infty$. Derive a bound uniformly away from zero for high enough d. The variance is expected to behave like $n h^{-2}$ above a critical dimension.

Ongoing work

- For $d=2$, prove that

$$
\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)=O\left(n h_{n}^{-1 / 2}\right)
$$

and the CLT holds for $h_{n} \ll n^{2 / 3}$.

- Note that $(d+1)^{-1} \rightarrow 0$ as $d \rightarrow \infty$. Derive a bound uniformly away from zero for high enough d. The variance is expected to behave like $n h^{-2}$ above a critical dimension.
- For oriented case we have a limiting Tracy Widom distribution. However for semi-directed paths our method gives a Gaussian CLT. Understanding the transition is open.

Ongoing work

- For $d=2$, prove that

$$
\operatorname{Var}\left(a_{n}\left(h_{n}\right)\right)=O\left(n h_{n}^{-1 / 2}\right)
$$

and the CLT holds for $h_{n} \ll n^{2 / 3}$.

- Note that $(d+1)^{-1} \rightarrow 0$ as $d \rightarrow \infty$. Derive a bound uniformly away from zero for high enough d. The variance is expected to behave like $n h^{-2}$ above a critical dimension.
- For oriented case we have a limiting Tracy Widom distribution. However for semi-directed paths our method gives a Gaussian CLT. Understanding the transition is open.
- Other works: long-range first-passage percolation with multiple phase transition. Invariant measures for nonlinear Schrödinger equation.

Thank you!

