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Percolation

Consider the d -dimensional square lattice Z
d with nearest

neighbor edges.
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Percolation

Consider the d -dimensional square lattice Z
d with nearest
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closed with probability 1− p where p is in (0, 1).
Percolation corresponds to the existence of infinite connected
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Percolation

Consider the d -dimensional square lattice Z
d with nearest

neighbor edges.
Each edge is present or open with probability p and absent or
closed with probability 1− p where p is in (0, 1).
Percolation corresponds to the existence of infinite connected
component.

Figure: p = 0.4

Partha S. Dey First-passage percolation along lattice cylinders 2 / 27



Percolation

Consider the d -dimensional square lattice Z
d with nearest

neighbor edges.
Each edge is present or open with probability p and absent or
closed with probability 1− p where p is in (0, 1).
Percolation corresponds to the existence of infinite connected
component.

Figure: p = 0.5
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Percolation

Consider the d -dimensional square lattice Z
d with nearest

neighbor edges.
Each edge is present or open with probability p and absent or
closed with probability 1− p where p is in (0, 1).
Percolation corresponds to the existence of infinite connected
component.

Figure: p = 0.6
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Percolation

Consider the d -dimensional square lattice Z
d with nearest

neighbor edges.
Each edge is present or open with probability p and absent or
closed with probability 1− p where p is in (0, 1).
Percolation corresponds to the existence of infinite connected
component.

Figure: p = 0.7
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Percolation

Consider the d -dimensional square lattice Z
d with nearest

neighbor edges.
Each edge is present or open with probability p and absent or
closed with probability 1− p where p is in (0, 1).
Percolation corresponds to the existence of infinite connected
component.

Figure: p = 0.8
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Percolation

Consider the d -dimensional square lattice Z
d with nearest

neighbor edges.
Each edge is present or open with probability p and absent or
closed with probability 1− p where p is in (0, 1).
Percolation corresponds to the existence of infinite connected
component.

Figure: p = 0.9
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Percolation

Consider the d -dimensional square lattice Z
d with nearest

neighbor edges.
Each edge is present or open with probability p and absent or
closed with probability 1− p where p is in (0, 1).
Percolation corresponds to the existence of infinite connected
component.

Figure: p = 1.0
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Phase Transition

Phase transition at pc(2) = 1/2 on Z
2:

if p < 1/2: no infinite cluster almost surely. (sub-critical)

if p > 1/2: one unique infinite cluster almost surely.
(super-critical)

if p = 1/2: no infinite cluster almost surely. (critical)
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Phase Transition

Phase transition at pc(2) = 1/2 on Z
2:

if p < 1/2: no infinite cluster almost surely. (sub-critical)

if p > 1/2: one unique infinite cluster almost surely.
(super-critical)

if p = 1/2: no infinite cluster almost surely. (critical)

For every dimension d , pc(d) exists and is strictly in between 0
and 1.
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First-passage pecolation

Now consider the same lattice model where each edge e has
independent and identically distributed (i.i.d.) random
nonnegative weight ωe from a fixed distribution F .
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First-passage pecolation

P

• •

For any path P, define the passage time for P by

ω(P) :=
∑

e∈P

ωe .
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First-passage pecolation

• ••
x

•
y

For two vertices x, y ∈ Zd , the first-passage time a(x, y) is
defined as the minimum passage time over all paths from x to
y.
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Model

This was introduced by Hammersley and Welsh(’65) to model the
flow of liquid through random media and it can be defined for any
connected graph G .
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Model

This was introduced by Hammersley and Welsh(’65) to model the
flow of liquid through random media and it can be defined for any
connected graph G .

Figure: Cluster growth
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Known results: Mean behavior

When the edge weights have finite mean, by subadditivity

ν(x) = lim
n→∞

1

n
a(0, ⌊nx⌋)

exists and is finite for all x ∈ R
d (HW’65).
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Known results: Mean behavior

When the edge weights have finite mean, by subadditivity

ν(x) = lim
n→∞

1

n
a(0, ⌊nx⌋)

exists and is finite for all x ∈ R
d (HW’65).

Subadditivity: Let an be a sequence of real numbers that
satisfies an+m ≤ an + am for all n,m. Then limn→∞ an/n
exists and equals infn≥1 an/n.
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Known results: Mean behavior

When the edge weights have finite mean, by subadditivity

ν(x) = lim
n→∞

1

n
a(0, ⌊nx⌋)

exists and is finite for all x ∈ R
d (HW’65).

Subadditivity: Let an be a sequence of real numbers that
satisfies an+m ≤ an + am for all n,m. Then limn→∞ an/n
exists and equals infn≥1 an/n.

Proof: For any fixed integer m ≥ 1 we have

an

n
≤

km

km + r
·
am

m
+

ar

n

where n = km + r and 0 ≤ r < m. Letting n → ∞ we have

lim sup
an

n
≤ inf

am

m
≤ lim inf

an

n
.
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Known results: Mean behavior

When the edge weights have finite mean, by subadditivity

ν(x) = lim
n→∞

1

n
a(0, ⌊nx⌋)

exists and is finite for all x ∈ R
d (HW’65).

A shape theorem was proved by Cox and Durrett(’81) which
says that for every small ε > 0 and large enough t

(1 + ε)B ⊆
Bt

t
⊆ (1 + ε)B

a.s. where Bt = {x : a(0, ⌊x⌋) ≤ t} and B = {x : ν(x) ≤ 1}.
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Known results: Mean behavior

When the edge weights have finite mean, by subadditivity

ν(x) = lim
n→∞

1

n
a(0, ⌊nx⌋)

exists and is finite for all x ∈ R
d (HW’65).

A shape theorem was proved by Cox and Durrett(’81) which
says that for every small ε > 0 and large enough t

(1 + ε)B ⊆
Bt

t
⊆ (1 + ε)B

a.s. where Bt = {x : a(0, ⌊x⌋) ≤ t} and B = {x : ν(x) ≤ 1}.

Kesten(’86) proved that, ν(x) > 0 iff P(ωe = 0) < pc(d)
where pc(d) is the critical probability for bond percolation in
Z

d .
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Mean behavior
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Known results: variance bounds

Bounds on Var(a(0, nx)) when P(ωe = 0) < pc(d):

lower bound of Ω(log n) for d = 2 (probabilistic arguments)
due to Pemantle and Peres(’94), Newman and Piza(’95) and Zhang(’08).

Partha S. Dey First-passage percolation along lattice cylinders 8 / 27



Known results: variance bounds

Bounds on Var(a(0, nx)) when P(ωe = 0) < pc(d):
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Bounds on Var(a(0, nx)) when P(ωe = 0) < pc(d):

lower bound of Ω(log n) for d = 2 (probabilistic arguments)
due to Pemantle and Peres(’94), Newman and Piza(’95) and Zhang(’08).

upper bound of O(n/ log n) for general d (hypercontractivity)
due to Benjamini, Kalai and Schramm(’03).

conjectured bound for d = 2, Var(a(0, nx)) ≈ n2/3.

When P(ωe = 0) = pc(d), the mean and variance of a(0, nx)
is of the order of log n and we have Gaussian limit as n → ∞
(Chayes, Chayes and Durrett(’86), and Newman and Zhang(’97)).
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Known results: variance bounds

Bounds on Var(a(0, nx)) when P(ωe = 0) < pc(d):

lower bound of Ω(log n) for d = 2 (probabilistic arguments)
due to Pemantle and Peres(’94), Newman and Piza(’95) and Zhang(’08).

upper bound of O(n/ log n) for general d (hypercontractivity)
due to Benjamini, Kalai and Schramm(’03).

conjectured bound for d = 2, Var(a(0, nx)) ≈ n2/3.

When P(ωe = 0) = pc(d), the mean and variance of a(0, nx)
is of the order of log n and we have Gaussian limit as n → ∞
(Chayes, Chayes and Durrett(’86), and Newman and Zhang(’97)).

Nothing is known about the limiting distribution of a(0, nx)
when P(ωe = 0) < pc(d).

Partha S. Dey First-passage percolation along lattice cylinders 8 / 27



Predictions

Var(a(0, nx)) ≈ n2χ and the minimizing path deviates from
the straight line path joining 0 to nx by at most nξ where χ, ξ
depends only on d .
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Predictions

Var(a(0, nx)) ≈ n2χ and the minimizing path deviates from
the straight line path joining 0 to nx by at most nξ where χ, ξ
depends only on d .

The scaling relation (KPZ universality)

χ = 2ξ − 1

holds for all dimension d .
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Predictions

Var(a(0, nx)) ≈ n2χ and the minimizing path deviates from
the straight line path joining 0 to nx by at most nξ where χ, ξ
depends only on d .

The scaling relation (KPZ universality)

χ = 2ξ − 1

holds for all dimension d .

For d = 2, it is predicted that, χ = 1/3 and ξ = 2/3. i.e.,

Var(a(0, nx)) ≈ n2/3

and the minimizing path is in Z× [−n2/3+ε, n2/3+ε] for any
ε > 0 according to the predictions.

Partha S. Dey First-passage percolation along lattice cylinders 9 / 27



KPZ heuristics

≈ n

≈ h

≈
√
n2 + h2 ≈ n+ h2/2n

n2ξ

2n
≈ nχ =⇒ 2ξ − 1 = χ.
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Our result

Consider the first-passage time an(hn) from 0 to (n, 0, . . . , 0) in
the graph Z× [−hn, hn]

d−1.
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Our result

Consider the first-passage time an(hn) from 0 to (n, 0, . . . , 0) in
the graph Z× [−hn, hn]

d−1.

Theorem (Chatterjee and D. (2010))

Suppose P(ωe = 0) < pc(d) with all moments finite. Let hn be a

sequence of integers satisfying hn ≪ n1/(d+1). Then we have

an(hn)− E[an(hn)]
√

Var(an(hn))
=⇒ Standard Gaussian as n → ∞.
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Our result

Consider the first-passage time an(hn) from 0 to (n, 0, . . . , 0) in
the graph Z× [−hn, hn]

d−1.

Theorem (Chatterjee and D. (2010))

Suppose P(ωe = 0) < pc(d) with all moments finite. Let hn be a

sequence of integers satisfying hn ≪ n1/(d+1). Then we have

an(hn)− E[an(hn)]
√

Var(an(hn))
=⇒ Standard Gaussian as n → ∞.

In particular, in two-dimension, we have Gaussian Limit as long as

hn ≪ n1/3.
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Moment bounds

We have,

lim
n→∞

1

n
E[an(hn)] = ν(1, 0, . . . , 0)

when hn → ∞.
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Moment bounds

We have,

lim
n→∞

1

n
E[an(hn)] = ν(1, 0, . . . , 0)

when hn → ∞.

For all n, hn, we have

cn

hd−1
n

≤ Var(an(hn)) ≤ Cn

where c ,C depends only on F and d .
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Moment bounds

We have,

lim
n→∞

1

n
E[an(hn)] = ν(1, 0, . . . , 0)

when hn → ∞.

For all n, hn, we have

cn

hd−1
n

≤ Var(an(hn)) ≤ Cn

where c ,C depends only on F and d .

For all n, hn, we have

E[|an(hn)− E[an(hn)]|
k ] ≤ cnk/2

where c depends only on F and d .
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Fixed h case

Assume hn = h for all n for fixed h ∈ (0,∞)

Both

µ(h) := lim
n→∞

1

n
E[an(h)] and σ2(h) := lim

n→∞

1

n
Var(an(h))

exist and are positive for any non-degenerate distribution F on
[0,∞), but their values depend on h,F .
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Fixed h case

Assume hn = h for all n for fixed h ∈ (0,∞)

Both

µ(h) := lim
n→∞

1

n
E[an(h)] and σ2(h) := lim

n→∞

1

n
Var(an(h))

exist and are positive for any non-degenerate distribution F on
[0,∞), but their values depend on h,F .

The scaled process {(nσ2(h))−1/2(X (nt)− ntµ(h))}t≥0

converges in distribution to the standard Brownian motion as
n → ∞ where

X (n) = an(h) for n ≥ 1

and extended by linear interpolation.
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Take home message

Below the height threshold the first-passage time has Gaussian
fluctuation and Gaussianity breaks down at the height threshold.
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Why the variance bounds are not tight?

Assume that the weight of the edge e is ωe = v2e where ve ’s
are standard Gaussian random variables.
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Why the variance bounds are not tight?

Assume that the weight of the edge e is ωe = v2e where ve ’s
are standard Gaussian random variables.

Taking f to be the first-passage time a(0, ne1) function we
have

∂f

∂ve
= ve · 1{edge e is in the minimizing path}.
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Why the variance bounds are not tight?

Assume that the weight of the edge e is ωe = v2e where ve ’s
are standard Gaussian random variables.

Taking f to be the first-passage time a(0, ne1) function we
have

∂f

∂ve
= ve · 1{edge e is in the minimizing path}.

Any L2 function f of gaussian variables can be expanded in
Hermite orthonormal basis as f =

∑∞
k=0

∑

||m||1=k
cmH̃m and

by Parseval’s identity we have

Var(f ) =
∑

k≥1

a2k

where a2
k
=

∑

||m||1=k
c2m. Moreover we also have,

E[|∇f |2] =
∑

k≥1

ka2k
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Why the variance bounds are not tight?

We have E[|∇f |2] = E[a(0, ne1)] = O(n) and thus

∑

k≥1

ka2k = O(n).
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Why the variance bounds are not tight?

We have E[|∇f |2] = E[a(0, ne1)] = O(n) and thus

∑

k≥1

ka2k = O(n).

If one can show that the main contribution of Var(f ) comes
from a2

k
with k ≈ k0 then the variance will be of the order

n/k0.
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We have E[|∇f |2] = E[a(0, ne1)] = O(n) and thus

∑

k≥1

ka2k = O(n).

If one can show that the main contribution of Var(f ) comes
from a2

k
with k ≈ k0 then the variance will be of the order

n/k0.

Using hypercontractivity one can prove that

k0 ≥ log hn.
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Why the variance bounds are not tight?

We have E[|∇f |2] = E[a(0, ne1)] = O(n) and thus

∑

k≥1

ka2k = O(n).

If one can show that the main contribution of Var(f ) comes
from a2

k
with k ≈ k0 then the variance will be of the order

n/k0.

Using hypercontractivity one can prove that

k0 ≥ log hn.

Hence for hn → ∞, an(hn) is noise sensitive, which implies
that any constant level Fourier mass is negligible compared to
the variance.
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Why the variance bounds are not tight?

We have E[|∇f |2] = E[a(0, ne1)] = O(n) and thus

∑

k≥1

ka2k = O(n).

If one can show that the main contribution of Var(f ) comes
from a2

k
with k ≈ k0 then the variance will be of the order

n/k0.

Using hypercontractivity one can prove that

k0 ≥ log hn.

Hence for hn → ∞, an(hn) is noise sensitive, which implies
that any constant level Fourier mass is negligible compared to
the variance.

The hardest part is to analyse the full spectrum.
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Simulation studies (Variance)

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Values of p

Es
tim

at
ed

 v
al

ue
 o

f γ

 

 
α = 0.667
α = 0.500
α = 0.400
α = 0.333

Figure: Plot of estimated value of γ vs. p for different values of α under
i.i.d. Bernoulli(p) data and the assumption that Var(an(n

α)) = O(nh−γ
n ).
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Simulation studies (CLT)
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Figure: QQ plots based on simulation data for an(n
1/2) for n = 3000

against normal distribution for Bernoulli(p) edge weights, p = 0.6, 0.7,
0.8, 0.9 in clockwise direction starting from top left.
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Sketch of the proof: d = 2 and hn ≪ n
α

0 n = ml ∞
−h

h

0

−h

h

0

Let n = ml with l ≈ nβ and m ≈ n1−β with hn ≪ l .
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Sketch of the proof: d = 2 and hn ≪ n
α

0 n = ml ∞
−h

h

0

−h

h

0

l 2l · · · · · ·

B1 B2 Bm· · · · · ·

Let n = ml with l ≈ nβ and m ≈ n1−β with hn ≪ l .

Break [0, n]× [−hn, hn] into m blocks

Bi = [(i − 1)l , il ]× [−hn, hn] for 1 ≤ i ≤ m.

Partha S. Dey First-passage percolation along lattice cylinders 19 / 27



Sketch of the proof: d = 2 and hn ≪ n
α

0 n = ml ∞
−h

h

0

−h

h

0

l 2l · · · · · ·

Let n = ml with l ≈ nβ and m ≈ n1−β with hn ≪ l .

Break [0, n]× [−hn, hn] into m blocks

Bi = [(i − 1)l , il ]× [−hn, hn] for 1 ≤ i ≤ m.

Let Xi be the minimum passage time over all paths joining
left boundary of Bi to its right boundary inside the block Bi .
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Sketch of the proof: d = 2 and hn ≪ n
α

0 n = ml ∞
−h

h

0

−h

h

0

l 2l · · · · · ·

Let n = ml with l ≈ nβ and m ≈ n1−β with hn ≪ l .

Break [0, n]× [−hn, hn] into m blocks

Bi = [(i − 1)l , il ]× [−hn, hn] for 1 ≤ i ≤ m.

Let Xi be the minimum passage time over all paths joining
left boundary of Bi to its right boundary inside the block Bi .

Xi ’s are independent for 1 ≤ i ≤ m with Xi

d
= T (l , hn) where

T (l , hn) := inf{ω(P) : P is a path joining

left and right boundaries of [0, l ]× [−hn, hn]}.
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Approximation as i.i.d. sum

We have
an(hn) ≥ X1 + X2 + · · ·Xm.
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Approximation as i.i.d. sum

We have
an(hn) ≥ X1 + X2 + · · ·Xm.

We also have

an(hn) ≤ X1 + X2 + · · ·Xm + Z

where Z is sum of all edge-weights in the left/right
boundaries of Bi .
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Approximation as i.i.d. sum

We have
an(hn) ≥ X1 + X2 + · · ·Xm.

We also have

an(hn) ≤ X1 + X2 + · · ·Xm + Z

where Z is sum of all edge-weights in the left/right
boundaries of Bi .

E

∣

∣

∣

∣

an(hn)− E[an(hn)]
√

Var(an(hn))
−

m
∑

i=1

Xi − E[Xi ]
√

Var(an(hn))

∣

∣

∣

∣

2

≤
4E[Z 2]

Var(an(hn))
.
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Approximation as i.i.d. sum (contd.)

Now E[Z 2] = O((mhn)
2) and Var(an(hn)) = Ω(n/hn).
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Approximation as i.i.d. sum (contd.)

Now E[Z 2] = O((mhn)
2) and Var(an(hn)) = Ω(n/hn).

Thus an(hn) is approximately a sum of i.i.d. random variables
when

E[Z 2] ≈ (mhn)
2 ≪ n/hn ≤ Var(an(hn))

or 3α ≤ 1− 2(1− β) = 2β − 1.
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Approximation as i.i.d. sum (contd.)

Now E[Z 2] = O((mhn)
2) and Var(an(hn)) = Ω(n/hn).

Thus an(hn) is approximately a sum of i.i.d. random variables
when

E[Z 2] ≈ (mhn)
2 ≪ n/hn ≤ Var(an(hn))

or 3α ≤ 1− 2(1− β) = 2β − 1.

Using Lyapounov’s condition, CLT holds for X1 + · · · + Xm

when
mE |X1 − E[X1]|

k

(mVar(X1))k/2
= o(1).
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Central Limit Theorem upto n
1/5 (hn ≪ n

α
,m ≈ n

1−β)

Using moment upper bound we have

mE |X1 − E[X1]|
k

(mVar(X1))k/2
≤ const ×

m × lk/2

(

ml

hn

)k/2

and this is small when

h
k/2
n ≪ mk/2−1 or α ≤

k − 2

k
(1− β).
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Central Limit Theorem upto n
1/5 (hn ≪ n

α
,m ≈ n

1−β)

Using moment upper bound we have

mE |X1 − E[X1]|
k

(mVar(X1))k/2
≤ const ×

m × lk/2

(

ml

hn

)k/2

and this is small when

h
k/2
n ≪ mk/2−1 or α ≤

k − 2

k
(1− β).

We also need to satisfy

3α ≤ 2β − 1.
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Central Limit Theorem upto n
1/5 (hn ≪ n

α
,m ≈ n

1−β)

Using moment upper bound we have

mE |X1 − E[X1]|
k

(mVar(X1))k/2
≤ const ×

m × lk/2

(

ml

hn

)k/2

and this is small when

h
k/2
n ≪ mk/2−1 or α ≤

k − 2

k
(1− β).

We also need to satisfy

3α ≤ 2β − 1.

Taking β = 4/5 and k large we have CLT for an(hn) when
hn ≪ n1/5.
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Additive moment bound

Note that when l = m2l2 we have

E |T (l , hn)−

m2
∑

i=1

Ti(l2, hn)|
k = O((m2hn)

k)

where Ti ’s are i.i.d.
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Additive moment bound

Note that when l = m2l2 we have

E |T (l , hn)−

m2
∑

i=1

Ti(l2, hn)|
k = O((m2hn)

k)

where Ti ’s are i.i.d.

Moreover, by Rosenthal’s inequality we have, for i.i.d. mean
zero random variables X1, . . . ,Xm, k ≥ 2,

E[|X1 + · · ·+ Xm|
k ] ≤ Ck max{mk/2 · E[X 2]k/2,m · E[|X |k ]}.
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Additive moment bound

Note that when l = m2l2 we have

E |T (l , hn)−

m2
∑

i=1

Ti(l2, hn)|
k = O((m2hn)

k)

where Ti ’s are i.i.d.

Moreover, by Rosenthal’s inequality we have, for i.i.d. mean
zero random variables X1, . . . ,Xm, k ≥ 2,

E[|X1 + · · ·+ Xm|
k ] ≤ Ck max{mk/2 · E[X 2]k/2,m · E[|X |k ]}.

The previous bound was using the fact that

E[|X1 + · · ·+ Xm|
k ] ≤ C ′

k mk/2 ·E[|X |k ].
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Renormalization

Each Xi has the same properties as the variable an(hn). Using
this self-similarity upto two level with l ≈ n7/8, l2 ≈ n3/4 one
can prove CLT for hn = o(nα) with α < 1

4 .

The values of li are optimal values for 3 inequalities.

Partha S. Dey First-passage percolation along lattice cylinders 24 / 27



Renormalization

Each Xi has the same properties as the variable an(hn). Using
this self-similarity upto two level with l ≈ n7/8, l2 ≈ n3/4 one
can prove CLT for hn = o(nα) with α < 1

4 .

The values of li are optimal values for 3 inequalities.

Using t level splitting with

log li
log n

≈ 1−
i

3t + 2
for i = 1, 2, . . . , t

we have CLT for hn = o(nα) with α < t

3t+2 .
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Renormalization

Each Xi has the same properties as the variable an(hn). Using
this self-similarity upto two level with l ≈ n7/8, l2 ≈ n3/4 one
can prove CLT for hn = o(nα) with α < 1

4 .

The values of li are optimal values for 3 inequalities.

Using t level splitting with

log li
log n

≈ 1−
i

3t + 2
for i = 1, 2, . . . , t

we have CLT for hn = o(nα) with α < t

3t+2 .

Thus taking t large enough, we have CLT for hn = o(nα) with
α < 1/3.
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Why should CLT hold upto n
2/3 in 2-dimension

Let’s look at at the error terms in the proof of CLT. Recall
that n = ml with l ≈ nβ, hn = o(nα) and each sub-block has
size l × hn.
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Let’s look at at the error terms in the proof of CLT. Recall
that n = ml with l ≈ nβ, hn = o(nα) and each sub-block has
size l × hn.

- Let the variance lower bound be Ω(l/hγ
n
) for hn “small”.
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Why should CLT hold upto n
2/3 in 2-dimension

Let’s look at at the error terms in the proof of CLT. Recall
that n = ml with l ≈ nβ, hn = o(nα) and each sub-block has
size l × hn.

- Let the variance lower bound be Ω(l/hγ
n
) for hn “small”.

- Let the vertical fluctuation within each sub-block be ≈ h2
n
/l .
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Why should CLT hold upto n
2/3 in 2-dimension

Let’s look at at the error terms in the proof of CLT. Recall
that n = ml with l ≈ nβ, hn = o(nα) and each sub-block has
size l × hn.

- Let the variance lower bound be Ω(l/hγ
n
) for hn “small”.

- Let the vertical fluctuation within each sub-block be ≈ h2
n
/l .

For the i.i.d. sum approximation to hold we need

m ·
h2n
l

≪

√

m ·
l

h
γ
n

2(1− β + 2α− β) < 1− β + β − γα

α <
4β − 1

4 + γ
.
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Why should CLT hold upto n
2/3 in 2-dimension

Let’s look at at the error terms in the proof of CLT. Recall
that n = ml with l ≈ nβ, hn = o(nα) and each sub-block has
size l × hn.

- Let the variance lower bound be Ω(l/hγ
n
) for hn “small”.

- Let the vertical fluctuation within each sub-block be ≈ h2
n
/l .

For the i.i.d. sum approximation to hold we need

m ·
h2n
l

≪

√

m ·
l

h
γ
n

2(1− β + 2α− β) < 1− β + β − γα

α <
4β − 1

4 + γ
.

For γ = 1/2, taking β ≈ 1 we have CLT upto o(n2/3).
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Why should CLT hold upto n
2/3 in 2-dimension

Let’s look at at the error terms in the proof of CLT. Recall
that n = ml with l ≈ nβ, hn = o(nα) and each sub-block has
size l × hn.

- Let the variance lower bound be Ω(l/hγ
n
) for hn “small”.

- Let the vertical fluctuation within each sub-block be ≈ h2
n
/l .

For the i.i.d. sum approximation to hold we need

m ·
h2n
l

≪

√

m ·
l

h
γ
n

2(1− β + 2α− β) < 1− β + β − γα

α <
4β − 1

4 + γ
.

For γ = 1/2, taking β ≈ 1 we have CLT upto o(n2/3).

In our proof, we used γ = 1 and vertical fluctuation hn.
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Ongoing work

For d = 2, prove that

Var(an(hn)) = O(nh
−1/2
n )

and the CLT holds for hn ≪ n2/3.
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Ongoing work

For d = 2, prove that

Var(an(hn)) = O(nh
−1/2
n )

and the CLT holds for hn ≪ n2/3.

Note that (d + 1)−1 → 0 as d → ∞. Derive a bound
uniformly away from zero for high enough d . The variance is
expected to behave like nh−2 above a critical dimension.
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Var(an(hn)) = O(nh
−1/2
n )

and the CLT holds for hn ≪ n2/3.

Note that (d + 1)−1 → 0 as d → ∞. Derive a bound
uniformly away from zero for high enough d . The variance is
expected to behave like nh−2 above a critical dimension.

For oriented case we have a limiting Tracy Widom
distribution. However for semi-directed paths our method
gives a Gaussian CLT. Understanding the transition is open.
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Ongoing work

For d = 2, prove that

Var(an(hn)) = O(nh
−1/2
n )

and the CLT holds for hn ≪ n2/3.

Note that (d + 1)−1 → 0 as d → ∞. Derive a bound
uniformly away from zero for high enough d . The variance is
expected to behave like nh−2 above a critical dimension.

For oriented case we have a limiting Tracy Widom
distribution. However for semi-directed paths our method
gives a Gaussian CLT. Understanding the transition is open.

Other works: long-range first-passage percolation with
multiple phase transition. Invariant measures for nonlinear
Schrödinger equation.
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Thank you!
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