First-passage percolation along lattice cylinders

Partha S. Dey

Courant Institute of Mathematical Sciences, NYU

Saha Institute of Nuclear Physics, RFA Colloquium January 21, 2011

• Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 p where p is in (0, 1).

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 − p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

Figure: p = 0.1

Partha S. Dey First-passage percolation along lattice cylinders 2 / 27

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 − p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

Figure: p = 0.2

Partha S. Dey

First-passage percolation along lattice cylinders 2 / 27

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 − p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

Figure: p = 0.3

Partha S. Dey

First-passage percolation along lattice cylinders 2 / 27

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 − p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

Figure: p = 0.4

Partha S. Dey

First-passage percolation along lattice cylinders 2 / 27

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 − p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

Figure: p = 0.5

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 − p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

Figure: p = 0.6

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 − p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

Figure: p = 0.7

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 − p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

Figure: p = 0.8

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 − p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

Figure: p = 0.9

- Consider the *d*-dimensional square lattice \mathbb{Z}^d with nearest neighbor edges.
- Each edge is present or open with probability p and absent or closed with probability 1 − p where p is in (0, 1).
- Percolation corresponds to the existence of infinite connected component.

Figure: p = 1.0

Phase Transition

Phase transition at $p_c(2) = 1/2$ on \mathbb{Z}^2 :

- if p < 1/2: no infinite cluster almost surely. (sub-critical)
- if p > 1/2: one unique infinite cluster almost surely. (super-critical)
- if p = 1/2: no infinite cluster almost surely. (critical)

Phase Transition

Phase transition at $p_c(2) = 1/2$ on \mathbb{Z}^2 :

- if p < 1/2: no infinite cluster almost surely. (sub-critical)
- if p > 1/2: one unique infinite cluster almost surely. (super-critical)
- if p = 1/2: no infinite cluster almost surely. (critical)

For every dimension d, $p_c(d)$ exists and is strictly in between 0 and 1.

First-passage pecolation

 Now consider the same lattice model where each edge e has independent and identically distributed (i.i.d.) random nonnegative weight \u03c6_e from a fixed distribution F.

First-passage pecolation

• For any path \mathcal{P} , define the passage time for \mathcal{P} by

l

$$\omega(\mathcal{P}) := \sum_{e \in \mathcal{P}} \omega_e.$$

First-passage pecolation

For two vertices x, y ∈ Z^d, the first-passage time a(x, y) is defined as the minimum passage time over all paths from x to y.

Model

This was introduced by Hammersley and Welsh('65) to model the flow of liquid through random media and it can be defined for any connected graph G.

Model

This was introduced by Hammersley and Welsh('65) to model the flow of liquid through random media and it can be defined for any connected graph G.

Figure: Cluster growth

Partha S. Dey First-passage percolation along lattice cylinders 5 / 27

• When the edge weights have finite mean, by subadditivity

$$\nu(\mathbf{x}) = \lim_{n \to \infty} \frac{1}{n} a(\mathbf{0}, \lfloor n\mathbf{x} \rfloor)$$

exists and is finite for all $\mathbf{x} \in \mathbb{R}^d$ (HW'65).

• When the edge weights have finite mean, by subadditivity

$$\nu(\mathbf{x}) = \lim_{n \to \infty} \frac{1}{n} a(\mathbf{0}, \lfloor n\mathbf{x} \rfloor)$$

exists and is finite for all $\mathbf{x} \in \mathbb{R}^d$ (HW'65).

Subadditivity: Let a_n be a sequence of real numbers that satisfies $a_{n+m} \le a_n + a_m$ for all n, m. Then $\lim_{n\to\infty} a_n/n$ exists and equals $\inf_{n>1} a_n/n$.

• When the edge weights have finite mean, by subadditivity

$$\nu(\mathbf{x}) = \lim_{n \to \infty} \frac{1}{n} a(\mathbf{0}, \lfloor n\mathbf{x} \rfloor)$$

exists and is finite for all $\mathbf{x} \in \mathbb{R}^d$ (HW'65).

Subadditivity: Let a_n be a sequence of real numbers that satisfies $a_{n+m} \le a_n + a_m$ for all n, m. Then $\lim_{n\to\infty} a_n/n$ exists and equals $\inf_{n\ge 1} a_n/n$.

Proof: For any fixed integer $m \ge 1$ we have

$$\frac{a_n}{n} \le \frac{km}{km+r} \cdot \frac{a_m}{m} + \frac{a_r}{n}$$

where n = km + r and $0 \le r < m$. Letting $n \to \infty$ we have

$$\limsup \frac{a_n}{n} \le \inf \frac{a_m}{m} \le \liminf \frac{a_n}{n}.$$

• When the edge weights have finite mean, by subadditivity

$$\nu(\mathbf{x}) = \lim_{n \to \infty} \frac{1}{n} a(\mathbf{0}, \lfloor n\mathbf{x} \rfloor)$$

exists and is finite for all $\mathbf{x} \in \mathbb{R}^d$ (HW'65).

 A shape theorem was proved by Cox and Durrett('81) which says that for every small ε > 0 and large enough t

$$(1+arepsilon)B\subseteq rac{B_t}{t}\subseteq (1+arepsilon)B$$

a.s. where $B_t = \{ \mathbf{x} : \mathbf{a}(\mathbf{0}, \lfloor \mathbf{x} \rfloor) \leq t \}$ and $B = \{ \mathbf{x} : \nu(\mathbf{x}) \leq 1 \}$.

• When the edge weights have finite mean, by subadditivity

$$\nu(\mathbf{x}) = \lim_{n \to \infty} \frac{1}{n} a(\mathbf{0}, \lfloor n\mathbf{x} \rfloor)$$

exists and is finite for all $\mathbf{x} \in \mathbb{R}^d$ (HW'65).

 A shape theorem was proved by Cox and Durrett('81) which says that for every small ε > 0 and large enough t

$$(1+arepsilon)B\subseteq rac{B_t}{t}\subseteq (1+arepsilon)B$$

a.s. where $B_t = \{ \mathbf{x} : \mathbf{a}(\mathbf{0}, \lfloor \mathbf{x} \rfloor) \leq t \}$ and $B = \{ \mathbf{x} : \nu(\mathbf{x}) \leq 1 \}$.

• Kesten('86) proved that, $\nu(\mathbf{x}) > 0$ iff $\mathbb{P}(\omega_e = 0) < p_c(d)$ where $p_c(d)$ is the critical probability for bond percolation in \mathbb{Z}^d .

Mean behavior

- Bounds on $Var(a(\mathbf{0}, n\mathbf{x}))$ when $\mathbb{P}(\omega_e = 0) < p_c(d)$:
 - lower bound of Ω(log n) for d = 2 (probabilistic arguments) due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).

- lower bound of Ω(log n) for d = 2 (probabilistic arguments) due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
- upper bound of $O(n/\log n)$ for general d (hypercontractivity) due to Benjamini, Kalai and Schramm('03).

- lower bound of Ω(log n) for d = 2 (probabilistic arguments) due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
- upper bound of $O(n/\log n)$ for general d (hypercontractivity) due to Benjamini, Kalai and Schramm('03).
- conjectured bound for d = 2, $Var(a(0, nx)) \approx n^{2/3}$.

- lower bound of Ω(log n) for d = 2 (probabilistic arguments) due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
- upper bound of O(n/log n) for general d (hypercontractivity) due to Benjamini, Kalai and Schramm('03).
- conjectured bound for d = 2, $Var(a(0, nx)) \approx n^{2/3}$.
- When $\mathbb{P}(\omega_e = 0) = p_c(d)$, the mean and variance of $a(\mathbf{0}, n\mathbf{x})$ is of the order of log n and we have Gaussian limit as $n \to \infty$ (Chayes, Chayes and Durrett('86), and Newman and Zhang('97)).

- lower bound of Ω(log n) for d = 2 (probabilistic arguments) due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
- upper bound of O(n/log n) for general d (hypercontractivity) due to Benjamini, Kalai and Schramm('03).
- conjectured bound for d = 2, $Var(a(0, nx)) \approx n^{2/3}$.
- When $\mathbb{P}(\omega_e = 0) = p_c(d)$, the mean and variance of $a(\mathbf{0}, n\mathbf{x})$ is of the order of $\log n$ and we have Gaussian limit as $n \to \infty$ (Chayes, Chayes and Durrett('86), and Newman and Zhang('97)).
- Nothing is known about the limiting distribution of a(0, nx) when P(ω_e = 0) < p_c(d).

Predictions

 Var(a(0, nx)) ≈ n^{2χ} and the minimizing path deviates from the straight line path joining 0 to nx by at most n^ξ where χ, ξ depends only on d.

Predictions

- Var(a(0, nx)) ≈ n^{2χ} and the minimizing path deviates from the straight line path joining 0 to nx by at most n^ξ where χ, ξ depends only on d.
- The scaling relation (KPZ universality)

$$\chi = 2\xi - 1$$

holds for all dimension d.

Predictions

- Var(a(0, nx)) ≈ n^{2χ} and the minimizing path deviates from the straight line path joining 0 to nx by at most n^ξ where χ, ξ depends only on d.
- The scaling relation (KPZ universality)

$$\chi = 2\xi - 1$$

holds for all dimension d.

• For d = 2, it is predicted that, $\chi = 1/3$ and $\xi = 2/3$. *i.e.*,

$$\mathbb{V}$$
ar($a(\mathbf{0}, n\mathbf{x})) pprox n^{2/3}$

and the minimizing path is in $\mathbb{Z} \times [-n^{2/3+\varepsilon}, n^{2/3+\varepsilon}]$ for any $\varepsilon > 0$ according to the predictions.

KPZ heuristics

$$\frac{n^{2\xi}}{2n} \approx n^{\chi} \implies 2\xi - 1 = \chi.$$

Partha S. Dey First-passage percolation along lattice cylinders 10 / 27
Our result

Consider the first-passage time $a_n(h_n)$ from **0** to (n, 0, ..., 0) in the graph $\mathbb{Z} \times [-h_n, h_n]^{d-1}$.

Our result

Consider the first-passage time $a_n(h_n)$ from **0** to (n, 0, ..., 0) in the graph $\mathbb{Z} \times [-h_n, h_n]^{d-1}$.

Theorem (Chatterjee and D. (2010))

Suppose $\mathbb{P}(\omega_e = 0) < p_c(d)$ with all moments finite. Let h_n be a sequence of integers satisfying $h_n \ll n^{1/(d+1)}$. Then we have

$$rac{a_n(h_n)-\mathbb{E}[a_n(h_n)]}{\sqrt{\mathbb{V}\mathrm{ar}(a_n(h_n))}} \Longrightarrow Standard Gaussian as n o \infty.$$

Our result

Consider the first-passage time $a_n(h_n)$ from **0** to (n, 0, ..., 0) in the graph $\mathbb{Z} \times [-h_n, h_n]^{d-1}$.

Theorem (Chatterjee and D. (2010))

Suppose $\mathbb{P}(\omega_e = 0) < p_c(d)$ with all moments finite. Let h_n be a sequence of integers satisfying $h_n \ll n^{1/(d+1)}$. Then we have

$$rac{A_n(h_n)-\mathbb{E}[a_n(h_n)]}{\sqrt{\mathbb{V}\mathrm{ar}(a_n(h_n))}} \Longrightarrow Standard Gaussian as $n o\infty.$$$

In particular, in two-dimension, we have Gaussian Limit as long as $h_n \ll n^{1/3}$.

Moment bounds

when $h_n \to \infty$.

Moment bounds

• We have, $\lim_{n o \infty} rac{1}{n} \mathbb{E}[a_n(h_n)] =
u(1,0,\dots,0)$

when $h_n \to \infty$.

• For all n, h_n , we have

$$rac{cn}{h_n^{d-1}} \leq \mathbb{V} ext{ar}(a_n(h_n)) \leq Cn$$

where c, C depends only on F and d.

Moment bounds

• We have, $\lim_{n \to \infty} \frac{1}{n} \mathbb{E}[a_n(h_n)] = \nu(1,0,\ldots,0)$

when $h_n \to \infty$.

• For all n, h_n , we have

$$\frac{cn}{h_n^{d-1}} \leq \operatorname{Var}(a_n(h_n)) \leq Cn$$

where c, C depends only on F and d.

• For all n, h_n , we have

$$\mathbb{E}[|a_n(h_n) - \mathbb{E}[a_n(h_n)]|^k] \le c n^{k/2}$$

where c depends only on F and d.

Fixed *h* case

Assume $h_n = h$ for all *n* for fixed $h \in (0, \infty)$

Both

$$\mu(h) := \lim_{n \to \infty} \frac{1}{n} \mathbb{E}[a_n(h)] \text{ and } \sigma^2(h) := \lim_{n \to \infty} \frac{1}{n} \mathbb{V}ar(a_n(h))$$

exist and are positive for any non-degenerate distribution F on $[0, \infty)$, but their values depend on h, F.

Fixed *h* case

Assume $h_n = h$ for all n for fixed $h \in (0, \infty)$

Both

$$\mu(h) := \lim_{n \to \infty} \frac{1}{n} \mathbb{E}[a_n(h)] \text{ and } \sigma^2(h) := \lim_{n \to \infty} \frac{1}{n} \mathbb{V}ar(a_n(h))$$

exist and are positive for any non-degenerate distribution F on $[0, \infty)$, but their values depend on h, F.

• The scaled process $\{(n\sigma^2(h))^{-1/2}(X(nt) - nt\mu(h))\}_{t\geq 0}$ converges in distribution to the standard Brownian motion as $n \to \infty$ where

 $X(n) = a_n(h)$ for $n \ge 1$

and extended by linear interpolation.

Below the height threshold the first-passage time has Gaussian fluctuation and Gaussianity breaks down at the height threshold.

• Assume that the weight of the edge e is $\omega_e = v_e^2$ where v_e 's are standard Gaussian random variables.

- Assume that the weight of the edge e is $\omega_e = v_e^2$ where v_e 's are standard Gaussian random variables.
- Taking *f* to be the first-passage time *a*(**0**, *n***e**₁) function we have

$$\frac{\partial f}{\partial v_e} = v_e \cdot \mathbb{1} \{ \text{edge } e \text{ is in the minimizing path} \}.$$

- Assume that the weight of the edge e is $\omega_e = v_e^2$ where v_e 's are standard Gaussian random variables.
- Taking f to be the first-passage time $a(\mathbf{0}, n\mathbf{e}_1)$ function we have

$$\frac{\partial f}{\partial v_e} = v_e \cdot \mathbb{1} \{ \text{edge } e \text{ is in the minimizing path} \}.$$

• Any L^2 function f of gaussian variables can be expanded in Hermite orthonormal basis as $f = \sum_{k=0}^{\infty} \sum_{||\mathbf{m}||_1=k} c_{\mathbf{m}} \tilde{H}_{\mathbf{m}}$ and by Parseval's identity we have

$$\mathbb{V}$$
ar $(f) = \sum_{k \geq 1} a_k^2$

where $a_k^2 = \sum_{||\mathbf{m}||_1=k} c_{\mathbf{m}}^2$. Moreover we also have,

$$\mathbb{E}[|\nabla f|^2] = \sum_{k \ge 1} ka_k^2$$

• We have $\mathbb{E}[|
abla f|^2] = \mathbb{E}[a(\mathbf{0}, n\mathbf{e}_1)] = O(n)$ and thus

$$\sum_{k\geq 1}ka_k^2=O(n).$$

• We have $\mathbb{E}[|\nabla f|^2] = \mathbb{E}[a(\mathbf{0}, n\mathbf{e}_1)] = O(n)$ and thus

$$\sum_{k\geq 1}ka_k^2=O(n).$$

 If one can show that the main contribution of Var(f) comes from a²_k with k ≈ k₀ then the variance will be of the order n/k₀.

• We have $\mathbb{E}[|\nabla f|^2] = \mathbb{E}[a(\mathbf{0}, n\mathbf{e}_1)] = O(n)$ and thus

$$\sum_{k\geq 1}ka_k^2=O(n).$$

- If one can show that the main contribution of Var(f) comes from a_k^2 with $k \approx k_0$ then the variance will be of the order n/k_0 .
- Using hypercontractivity one can prove that

 $k_0 \geq \log h_n$.

• We have $\mathbb{E}[|
abla f|^2] = \mathbb{E}[a(\mathbf{0}, n\mathbf{e}_1)] = O(n)$ and thus

$$\sum_{k\geq 1}ka_k^2=O(n).$$

- If one can show that the main contribution of Var(f) comes from a_k^2 with $k \approx k_0$ then the variance will be of the order n/k_0 .
- Using hypercontractivity one can prove that

$$k_0 \geq \log h_n$$
.

• Hence for $h_n \to \infty$, $a_n(h_n)$ is noise sensitive, which implies that any constant level Fourier mass is negligible compared to the variance.

• We have $\mathbb{E}[|
abla f|^2] = \mathbb{E}[a(\mathbf{0}, n\mathbf{e}_1)] = O(n)$ and thus

$$\sum_{k\geq 1}ka_k^2=O(n).$$

- If one can show that the main contribution of Var(f) comes from a_k^2 with $k \approx k_0$ then the variance will be of the order n/k_0 .
- Using hypercontractivity one can prove that

$$k_0 \geq \log h_n$$
.

- Hence for $h_n \to \infty$, $a_n(h_n)$ is noise sensitive, which implies that any constant level Fourier mass is negligible compared to the variance.
- The hardest part is to analyse the full spectrum.

Simulation studies (Variance)

Figure: Plot of estimated value of γ vs. p for different values of α under i.i.d. Bernoulli(p) data and the assumption that $\operatorname{Var}(a_n(n^{\alpha})) = O(nh_n^{-\gamma})$.

Simulation studies (CLT)

Figure: QQ plots based on simulation data for $a_n(n^{1/2})$ for n = 3000 against normal distribution for Bernoulli(p) edge weights, p = 0.6, 0.7, 0.8, 0.9 in clockwise direction starting from top left.

Partha S. Dey First-passage percolation along lattice cylinders 18 / 27

• Let n = ml with $l \approx n^{\beta}$ and $m \approx n^{1-\beta}$ with $h_n \ll l$.

• Break $[0, n] \times [-h_n, h_n]$ into *m* blocks

$$B_i = [(i-1)I, iI] imes [-h_n, h_n]$$
 for $1 \le i \le m_i$

 Let X_i be the minimum passage time over all paths joining left boundary of B_i to its right boundary inside the block B_i.

• Let n = ml with $l \approx n^{\beta}$ and $m \approx n^{1-\beta}$ with $h_n \ll l$.

• Break $[0, n] \times [-h_n, h_n]$ into *m* blocks

$$\mathcal{B}_i = [(i-1)I, iI] \times [-h_n, h_n]$$
 for $1 \le i \le m$.

- Let X_i be the minimum passage time over all paths joining left boundary of B_i to its right boundary inside the block B_i.
- X_i 's are independent for $1 \le i \le m$ with $X_i \stackrel{d}{=} T(I, h_n)$ where $T(I, h_n) := \inf\{\omega(\mathcal{P}) : \mathcal{P} \text{ is a path joining}$ left and right boundaries of $[0, I] \times [-h_n, h_n]\}.$

Approximation as i.i.d. sum

• We have

 $a_n(h_n) \geq X_1 + X_2 + \cdots + X_m.$

Approximation as i.i.d. sum

• We have

$$a_n(h_n) \geq X_1 + X_2 + \cdots + X_m.$$

• We also have

$$a_n(h_n) \leq X_1 + X_2 + \cdots + X_m + Z$$

where Z is sum of all edge-weights in the left/right boundaries of B_i .

Approximation as i.i.d. sum

• We have

$$a_n(h_n) \geq X_1 + X_2 + \cdots + X_m.$$

• We also have

$$a_n(h_n) \leq X_1 + X_2 + \cdots + X_m + Z$$

where Z is sum of all edge-weights in the left/right boundaries of B_i .

•
$$\mathbb{E}\left|\frac{a_n(h_n)-\mathbb{E}[a_n(h_n)]}{\sqrt{\mathbb{Var}(a_n(h_n))}}-\sum_{i=1}^m \frac{X_i-\mathbb{E}[X_i]}{\sqrt{\mathbb{Var}(a_n(h_n))}}\right|^2 \leq \frac{4\mathbb{E}[Z^2]}{\mathbb{Var}(a_n(h_n))}.$$

Partha S. Dey

Approximation as i.i.d. sum (contd.)

• Now
$$\mathbb{E}[Z^2] = O((mh_n)^2)$$
 and $\mathbb{V}ar(a_n(h_n)) = \Omega(n/h_n)$.

Approximation as i.i.d. sum (contd.)

- Now $\mathbb{E}[Z^2] = O((mh_n)^2)$ and $\mathbb{V}ar(a_n(h_n)) = \Omega(n/h_n)$.
- Thus $a_n(h_n)$ is approximately a sum of i.i.d. random variables when

$$\mathbb{E}[Z^2] \approx (mh_n)^2 \ll n/h_n \leq \mathbb{V}\mathrm{ar}(a_n(h_n))$$

or $3\alpha \leq 1 - 2(1 - \beta) = 2\beta - 1.$

Approximation as i.i.d. sum (contd.)

- Now $\mathbb{E}[Z^2] = O((mh_n)^2)$ and $\mathbb{V}ar(a_n(h_n)) = \Omega(n/h_n)$.
- Thus $a_n(h_n)$ is approximately a sum of i.i.d. random variables when

$$\mathbb{E}[Z^2] \approx (mh_n)^2 \ll n/h_n \leq \mathbb{V}\mathrm{ar}(a_n(h_n))$$

or $3\alpha \leq 1 - 2(1 - \beta) = 2\beta - 1.$

• Using Lyapounov's condition, CLT holds for $X_1 + \cdots + X_m$ when

$$\frac{m \operatorname{\mathbb{E}} |X_1 - \operatorname{\mathbb{E}}[X_1]|^k}{(m \operatorname{\mathbb{V}ar}(X_1))^{k/2}} = o(1).$$

Central Limit Theorem upto $n^{1/5}$ $(h_n \ll n^{lpha}, m pprox n^{1-eta})$

• Using moment upper bound we have

$$\frac{m \mathbb{E} |X_1 - \mathbb{E}[X_1]|^k}{(m \operatorname{Var}(X_1))^{k/2}} \le const \times \frac{m \times l^{k/2}}{\left(\frac{ml}{h_n}\right)^{k/2}}$$

and this is small when

$$h_n^{k/2} \ll m^{k/2-1}$$
 or $\alpha \leq \frac{k-2}{k}(1-\beta)$.

Central Limit Theorem upto $n^{1/5}$ $(h_n \ll n^{lpha}, m pprox n^{1-eta})$

• Using moment upper bound we have

$$\frac{m \mathbb{E} |X_1 - \mathbb{E}[X_1]|^k}{(m \operatorname{Var}(X_1))^{k/2}} \le const \times \frac{m \times l^{k/2}}{\left(\frac{ml}{h_n}\right)^{k/2}}$$

and this is small when

$$h_n^{k/2} \ll m^{k/2-1}$$
 or $\alpha \leq \frac{k-2}{k}(1-\beta)$.

• We also need to satisfy

 $3\alpha \leq 2\beta - 1.$

Central Limit Theorem upto $n^{1/5}$ $(h_n \ll n^{lpha}, m pprox n^{1-eta})$

• Using moment upper bound we have

$$\frac{m \mathbb{E} |X_1 - \mathbb{E}[X_1]|^k}{(m \operatorname{Var}(X_1))^{k/2}} \le const \times \frac{m \times l^{k/2}}{\left(\frac{ml}{h_n}\right)^{k/2}}$$

and this is small when

$$h_n^{k/2} \ll m^{k/2-1}$$
 or $\alpha \leq \frac{k-2}{k}(1-\beta).$

• We also need to satisfy

$$3\alpha \leq 2\beta - 1.$$

• Taking $\beta = 4/5$ and k large we have CLT for $a_n(h_n)$ when $h_n \ll n^{1/5}$.

Additive moment bound

• Note that when $I = m_2 I_2$ we have

$$\mathbb{E} |T(l,h_n) - \sum_{i=1}^{m_2} T_i(l_2,h_n)|^k = O((m_2h_n)^k)$$

where T_i 's are i.i.d.

Additive moment bound

• Note that when $I = m_2 I_2$ we have

$$\mathbb{E} |T(l,h_n) - \sum_{i=1}^{m_2} T_i(l_2,h_n)|^k = O((m_2h_n)^k)$$

where T_i 's are i.i.d.

• Moreover, by Rosenthal's inequality we have, for i.i.d. mean zero random variables X_1, \ldots, X_m , $k \ge 2$,

 $\mathbb{E}[|X_1+\cdots+X_m|^k] \leq C_k \max\{m^{k/2} \cdot \mathbb{E}[X^2]^{k/2}, m \cdot \mathbb{E}[|X|^k]\}.$

Additive moment bound

• Note that when $I = m_2 I_2$ we have

$$\mathbb{E} |T(l,h_n) - \sum_{i=1}^{m_2} T_i(l_2,h_n)|^k = O((m_2h_n)^k)$$

where T_i 's are i.i.d.

• Moreover, by Rosenthal's inequality we have, for i.i.d. mean zero random variables X_1, \ldots, X_m , $k \ge 2$,

 $\mathbb{E}[|X_1+\cdots+X_m|^k] \leq C_k \max\{m^{k/2} \cdot \mathbb{E}[X^2]^{k/2}, m \cdot \mathbb{E}[|X|^k]\}.$

• The previous bound was using the fact that

$$\mathbb{E}[|X_1+\cdots+X_m|^k] \leq C'_k \ m^{k/2} \cdot \mathbb{E}[|X|^k].$$

Renormalization

- Each X_i has the same properties as the variable $a_n(h_n)$. Using this self-similarity up to two level with $l \approx n^{7/8}$, $l_2 \approx n^{3/4}$ one can prove CLT for $h_n = o(n^{\alpha})$ with $\alpha < \frac{1}{4}$.
- The values of I_i are optimal values for 3 inequalities.
Renormalization

- Each X_i has the same properties as the variable $a_n(h_n)$. Using this self-similarity upto two level with $l \approx n^{7/8}$, $l_2 \approx n^{3/4}$ one can prove CLT for $h_n = o(n^{\alpha})$ with $\alpha < \frac{1}{4}$.
- The values of I_i are optimal values for 3 inequalities.
- Using t level splitting with

$$\frac{\log l_i}{\log n} \approx 1 - \frac{i}{3t+2} \text{ for } i = 1, 2, \dots, t$$

we have CLT for $h_n = o(n^{\alpha})$ with $\alpha < \frac{t}{3t+2}$.

Renormalization

- Each X_i has the same properties as the variable $a_n(h_n)$. Using this self-similarity upto two level with $l \approx n^{7/8}$, $l_2 \approx n^{3/4}$ one can prove CLT for $h_n = o(n^{\alpha})$ with $\alpha < \frac{1}{4}$.
- The values of I_i are optimal values for 3 inequalities.
- Using t level splitting with

$$\frac{\log l_i}{\log n} \approx 1 - \frac{i}{3t+2} \text{ for } i = 1, 2, \dots, t$$

we have CLT for $h_n = o(n^{\alpha})$ with $\alpha < \frac{t}{3t+2}$.

• Thus taking t large enough, we have CLT for $h_n = o(n^{\alpha})$ with $\alpha < 1/3$.

• Let's look at at the error terms in the proof of CLT. Recall that n = ml with $l \approx n^{\beta}$, $h_n = o(n^{\alpha})$ and each sub-block has size $l \times h_n$.

- Let's look at at the error terms in the proof of CLT. Recall that n = ml with $l \approx n^{\beta}$, $h_n = o(n^{\alpha})$ and each sub-block has size $l \times h_n$.
 - Let the variance lower bound be $\Omega(l/h_n^{\gamma})$ for h_n "small".

- Let's look at at the error terms in the proof of CLT. Recall that n = ml with $l \approx n^{\beta}$, $h_n = o(n^{\alpha})$ and each sub-block has size $l \times h_n$.
 - Let the variance lower bound be $\Omega(l/h_n^{\gamma})$ for h_n "small".
 - Let the vertical fluctuation within each sub-block be $\approx h_n^2/l$.

- Let's look at at the error terms in the proof of CLT. Recall that n = ml with $l \approx n^{\beta}$, $h_n = o(n^{\alpha})$ and each sub-block has size $l \times h_n$.
 - Let the variance lower bound be $\Omega(l/h_n^{\gamma})$ for h_n "small".
 - Let the vertical fluctuation within each sub-block be $\approx \frac{h_n^2}{l}$.
- For the i.i.d. sum approximation to hold we need

$$egin{aligned} m \cdot rac{h_n^2}{l} \ll \sqrt{m \cdot rac{l}{h_n^\gamma}} \ 2(1-eta+2lpha-eta) < 1-eta+eta-\gammalpha \ lpha < rac{4eta-1}{4+\gamma}. \end{aligned}$$

- Let's look at at the error terms in the proof of CLT. Recall that n = ml with $l \approx n^{\beta}$, $h_n = o(n^{\alpha})$ and each sub-block has size $l \times h_n$.
 - Let the variance lower bound be $\Omega(l/h_n^{\gamma})$ for h_n "small".
 - Let the vertical fluctuation within each sub-block be $\approx \frac{h_n^2}{l}$.
- For the i.i.d. sum approximation to hold we need

$$egin{aligned} m \cdot rac{h_n^2}{l} \ll \sqrt{m \cdot rac{l}{h_n^{\gamma}}} \ 2(1-eta+2lpha-eta) < 1-eta+eta-\gammalpha \ lpha < rac{4eta-1}{4+\gamma}. \end{aligned}$$

• For $\gamma = 1/2$, taking $\beta \approx 1$ we have CLT upto $o(n^{2/3})$.

- Let's look at at the error terms in the proof of CLT. Recall that n = ml with $l \approx n^{\beta}$, $h_n = o(n^{\alpha})$ and each sub-block has size $l \times h_n$.
 - Let the variance lower bound be $\Omega(l/h_n^{\gamma})$ for h_n "small".
 - Let the vertical fluctuation within each sub-block be $\approx \frac{h_n^2}{l}$.
- For the i.i.d. sum approximation to hold we need

$$egin{aligned} m \cdot rac{h_n^2}{l} \ll \sqrt{m \cdot rac{l}{h_n^\gamma}} \ 2(1-eta+2lpha-eta) < 1-eta+eta-\gammalpha \ lpha < rac{4eta-1}{4+\gamma}. \end{aligned}$$

• For $\gamma = 1/2$, taking $\beta \approx 1$ we have CLT upto $o(n^{2/3})$.

• In our proof, we used $\gamma = 1$ and vertical fluctuation h_n .

Partha S. Dey First-passage percolation along lattice cylinders

• For d = 2, prove that

$$\mathbb{V}\operatorname{ar}(a_n(h_n))=O(nh_n^{-1/2})$$

and the CLT holds for $h_n \ll n^{2/3}$.

• For d = 2, prove that

$$\mathbb{V}\operatorname{ar}(a_n(h_n))=O(nh_n^{-1/2})$$

and the CLT holds for $h_n \ll n^{2/3}$.

 Note that (d + 1)⁻¹ → 0 as d → ∞. Derive a bound uniformly away from zero for high enough d. The variance is expected to behave like nh⁻² above a critical dimension.

• For d = 2, prove that

$$\operatorname{Var}(a_n(h_n)) = O(nh_n^{-1/2})$$

and the CLT holds for $h_n \ll n^{2/3}$.

- Note that (d + 1)⁻¹ → 0 as d → ∞. Derive a bound uniformly away from zero for high enough d. The variance is expected to behave like nh⁻² above a critical dimension.
- For oriented case we have a limiting Tracy Widom distribution. However for semi-directed paths our method gives a Gaussian CLT. Understanding the transition is open.

• For d = 2, prove that

$$\operatorname{War}(a_n(h_n)) = O(nh_n^{-1/2})$$

and the CLT holds for $h_n \ll n^{2/3}$.

- Note that (d + 1)⁻¹ → 0 as d → ∞. Derive a bound uniformly away from zero for high enough d. The variance is expected to behave like nh⁻² above a critical dimension.
- For oriented case we have a limiting Tracy Widom distribution. However for semi-directed paths our method gives a Gaussian CLT. Understanding the transition is open.
- Other works: long-range first-passage percolation with multiple phase transition. Invariant measures for nonlinear Schrödinger equation.

Thank you!