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Plan for Today’s Lecture

Some things we are doing presently with
our low-energy stable beam accelerator
at Ohio University:

m (°He,n) spectroscopy for nova nucleosynthesis
m [ evel densities

m Spectroscopic studies for “C(aL,y)!°O



Edwards Accelerator Laboratory
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» 4.5-MV tandem accelerator
* D, d, 3*He, heavy ion beams
e 30 m time-of-flight tunnel
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The Origin of 2°Al in our Galaxy

* source of 1809-keV gamma rays
* half-life = 0.73 million years

Novae are likely a significant source, via the sequence

24Mg(p, )ZSAI(B+)25Mg(p, )26A1:

- Evidence from pre-solar grains
* Predicted by models (ONe novae)

26Al is not produced if this sequence occurs:

*Mg(p,y)>Al(p,y)*°Si(B")*mAl(B™)*Mg



1809-keV flux distribution (COMPTEL on CGRO)




Neutron Time-of-Flight Technique
2*Mg + °He = 26Si(*) + n

= <«——— neutron flight path (<30M) ———————) neutron

Beam (*He) detector

Target (**Mg)

* time of flight = neutron energy

* kinematics = E,_in 2°Si

* At = 2ns

* long flight path, low E_ desirable

* NE-213 scintillator = neutron / gamma discrimination

Excellent energy resolution achievable !



Neutron Energy Spectra
(Y. Parpottas)

full spectra

2*Mg(°He,n)?°Si(*)
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Mirror nucleus leads us to expect

3% and 0" in this region.




Implications for 22Al(p,y)%°Si

0. 0.6
E (MeV)
‘cm.

* Our reaction rate is a smaller at nova temperatures than previously thought.
* The J™ assignments should be verified.
* 288i(p,t)?Si has been repeated at HRIBF to verify 0" assignments.



Implications for 26Al production in Novae

* Calculations using the previous reaction rate
found that novae could produce up to 20% of the
observed galactic 2°Al (Jose’ et al.).

* Recent numerical studies (Iliadis et al. 2002) find
less sensitivity to this reaction rate than expected.

* Other nuclear physics inputs have significant
uncertainties.

e Recent data from SPI/INTEGRAL indicates
other source may be more important.



Experiment: '"O(°He,7)!"Ne

Pulsed 4.2-MeV “He beam chosen to optimize efficiency and resolution
= Q value of 4.2997 MeV with respect to "Ne ground state
= Chopped and bunched at 1.25 MHz (800 ns)
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Neutron Energy (MeV)
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10(3He,n)'®Ne
(Y. Parpottas)

Relevant for the "F(p,y)'®Ne Reaction

“Ne, E(He)=9.9 MeV, =0°, 5 keV WO ,

Counts/bin

]
=
[Tyl
E.
=
o
T
)
@
2.

Neutron Energy (MeV)



10(3He,n)'®Ne
(Y. Parpottas)

[(4.527) = 17(4) keV

“OfHe,n)"Ne, d =10m

_ .m0
(a) E(He)=9.9 MeV, =0°, 5 keV WO _

(1) 4.519 MeV of °Ne
(2) 4.527 MeV of °Ne
(3) 4.590 MeV of °Ne

Counts/bin

Neutron Energy (MeV)




Nuclear Reactions

Statistical (Hauser-Feshbach) Reactions
» Heavier (A>30) nuclei (except near closed shells or driplines)

Need:

o Level Densities
 Transmission Functions (optical potentials or strength functions)
» Understand systematics for both stable and unstable nuclei

Breit-Wigner Formula

Resolved Resonances

e need E>S’ Jr, part!al widths o(F) = @+ )2y + ) K2 (E — Ep)? + T2/4
* R-matrix analysis

2.J + 1 [ F1T3




Nuclear Level Densities

2~ au

Fermi Gas Form p(u) oc (&

3/2
u

g: single-particle state density at the
Fermi level

E, Is the excitation energy and
0 Is the shell and pairing correction

Normally Assume: where:

(1) a = oA oL = constant
AN\ 4



Recent Analysis of Al-Quraishi et al.
(2001,2003) investigated:

(2) a=oa; Aexp[-B(N-2)°]
(3) a=a, Aexp[-y(Z-Zy)*]
Where Z, = Z of 3-stable nucleus of mass A

Both equation (2) and equation (3) result in better fits than the
normal assumption, equation (1). Additionally, equation (3)
yields a better fit than equation (2).

The fitting was done for Nuclei with 20 < A <110. The
nuclei used had sufficient information on the resolved levels to
be used for level densities. This was also limited to both low

energies and | Z-Z, | <2.



Need More Tests of Al-Quraishi

Results
Energies > 3 MeV needed

More nuclei with |Z -Z,| > 2

Investigate neutron spectra from:
8Fe(3He,n)®Ni ONi has Z= Z,
>8Ni(He,n)%%Zn %0Zn has N =Z
Thus, traditional form (Eq. 1) has level density °Ni ~ 99Zn
Eg. (2) has level density °Ni < %0Zn
Eqg. (3) has level density ®°Ni > %0Zn

We are also Investigating
(°He,ny) which may allow the use of targets with
natural abundance to be used.



Measurement of the level density of °Fe from
SMn(d,n)*¢Fe reaction

= do/dE Neutron evaporation spectrum
4 (mb/MeV)
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Level density of °°Fe from neutron evaporation spectra
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o Level density from Oslo experiment
© Level density from °Mn(d,n)°%Fe experiment

‘L Level density of discrete low-lying levels



Evaporation Spectra Measured

e Sc(d,n)

e 51\/(d,n)

 %Sc(*He,n)

 >SMn(d,n)

o 8Fe: (®He,n); (*He,p); (*He,n)
 8Ni: (®He,n); (®He,p); (*He,n)
¢ 59Co(d,n)

Future Plans

 Ohio: *®Ti(3He,n); 4Zn(3He,n); °Ge(°He,n)
o LBL: 12C("°Kr,p/a); 12C("°Ge,p/a); 12C("°Se,p/a)



12C(a,y)**O Cross Section

12C(aL,y) - extrapolation to helium burning
energies E,=300 keV

12C(aL,y) cross

section
E1, E2 g.s. transitions | ,| cascade transitions
most contributions Up to 30% contribution

Determining the y strength of the cascade
transitions will result in a better extrapolation
of the cascade and E2 ground state cross
sections to low energies.




The Experiment

The 7.12-MeV excited state in 1°0 is
formed via the °F(p,a)'®O reaction by
bombarding targets of CaF,
100ug/cm? thickness, evaporated on
C backings.

The energy of the proton beam was
chosen at E=2.0025 MeV to
maximize the relative population of
the 7.12-MeV state.




W Shield

Ge Crystal




Result for the 7.12—6.13-MeV transition

Fit selected region to extract
background and count events
of interest.

Calibrated sources and
GEANT simulations used to
estimate detectors efficiency

Calculate 7.12—6.13-MeV
branching ratio:

f: NlMeV/SHPGe 2(8.3:|:0.4)X10_4

QTR B

500 1000 1500 2000 2500 3000 3500
HPGe Energy (channels)




Result for the 7.12—56.92-MeV transition

A limit for this transition can be
set with a 2-c confidence level:

Jr10569 = 1.2x107

7.12— 6.92 MeV

650 660 670 680 690 700 710
HPGe Energy (channels)




“ In Summary:

* Several reactions and nuclear astrophysics scenarios have been

discussed over the past week.

* Many labs in North America are working on these questions with
both stable beams (OU, UNC/Duke, Yale, Texas A&M,...) and
radioactive beams (ORNL, NSCL, ANL, TRIUMF,...). Obviously

this is a world-wide effort.

* We look forward to new data from ground- and space-based
observatories and other probes of our universe.




Rare Isotope Accelerator

Simplified Schematic Layout of the
Rare Isotope Accelerator (RIA) Facility
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Nuclear Astrophysics at RIA

RlA 2 In-flight Fragment
In-flight Separated Beams |_S&paration

Concept  (E>50Meviu)

Structure=iiu Astrophysics| No Acceleration:
Reactions E <1 MeV/u| Traps, Laser
E <15 MeV/u Spec., etc.

Reaccelerated Beams




RIA Floor Plan

Neutron Decay
Array Studies

HI=3-

| 100 ft |
| ‘ '
/ \ \ 50m
High - Resolution Gamma - Ray  Time Projection Gas Stopping
Spectrograph Spectroscopy Chamber Station

Mass separator ~ Gamma ray Magnetic Recoil separator ~ Astrophysics
’ tracking array  spectrograph i

4im e 24m



Low Energy Experimental Hall
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Proton Number

RIA Intensities

From a Mulfibeam Driver, Mass Separated Intensities (ions/s)
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