Cosmic Thermonuclear Reactors

How stars burn fuel to shine and make new elements

Alak K. Ray Tata Institute of Fundamental Research

Evidence for nucleosynthesis

Discovery of Technicium in stars (Merril 1952)

• Synthesised nuclei from the interior are mixed into the photosophere.

• Tc 99 has half-life of 2.1 x 10⁵ yrs & lies on s- nucleosynthesis path.

• Decay rate enhanced at high interior temperatures due to thermally populated excited mother nuclear states

 half life becomes ~few yrs at 300 million Kelvin (Takahashi &Yokoi 1987).
 Jan 16, 2006 SINP

Pagel Fig 1.8

proof for ongoing nucleosynthesis in stars !

Why do stars burn so slowly?

Stellar nuclear reactions can be:

- Charged particle reactions
- Neutral particle (neutron) induced

"what is possible in the Cavendish laboratory may not be too difficult in the sun" (A.S. Eddington 1920 while referring to Sir Ernest Rutherford)

Charged particle reaction cross sections drop rapidly with decreasing energy due to the Coulomb barrier.

At the low energies relevant for thermal plasma in stars, The cross sections become miniscule. They are therefore Difficult to measure for the stellar conditions in the lab.

Neutron and charged particle cross sections

Neutron cross-sections are large and increase with decreasing energy. These cross-sections can be measured in lab for stellar energies if such long lived nuclei

can be generated.

Charged particle cross-sections decrease rapidly with decreasing energy due to Coulomb barrier. The probability that the incoming particle penetrates the barrier simplifies at the low energy limit: $E \cdot E_c$, (classical turning point R_c being much larger than the nuclear radius R_n):--

$$P = \exp(\cdot 2 \cdot Z_1 Z_2 e^2 / (hv))$$

= $\exp[\cdot 31.3 Z_1 Z_2 (\mu / E)^{1/2}]$
 $\sigma \cong \cdot (\lambda / h)^2 \alpha (1/E)$
= $\exp(-2 \cdot \eta) S(E) / E$

Barrier penetration: charged particles

Coulomb barrier too high For heavy nuclei to have the Charged particle (blue dot) Penetrate into classically "forbidden" region and drop To a bound state at E < 0.

Neutrons do not suffer the Coulomb barrier

The s- and r- processes

- In the Z-N chart, the stable elements are represented by black squares.
- Many isobars have 3 stable members.
- If we raise a vertical axis M above the Z-N plane, we have a diagonal valley.
- Diagram to the right is a section along a line A=Z+N= even.
- The elements at the bottom of valley are the s- elements; they form a nearly continuous sequence.
- The isobars to the right of the valley (so-called r- elements) are comparatively richer in neutrons than s-elements. Their total abundance are nearly comparable to the s-elements.

Neutron captures Slow and Rapid compared to Beta-decays

process	conditions	timescale	site
s-process	T~ 0.1 GK	10 ² yr	Massive stars (weak)
(n-capture,)	τ _n ~ 1-1000 yr, n _n ~10 ⁷⁻⁸ /cm ³	and 10 ⁵⁻⁶ yrs	Low mass AGB stars (main)
r-process	T~1-2 GK	< 1s	Type II Supernovae ?
(n-capture,)	τ _n ~ μs, n _n ~10 ²⁴ /cm ³		Neutron Star Mergers ?
p-process ((γ,n),)	T~2-3 GK	~1s	Type II Supernovae

The s-process:

When neutron captures are much slower than typical beta decay rate,
 1) the weak reactions maintain the Z-N equilibrium; every time a neutron is captured and the A+1 nucleus beta decays to a nucleus of greater stability; 2) rate of synthesis and the "mass flow" to heavier nuclei is proportional to the rate of neutron capture; 3) the path of nucleosynthesis sticks to the valley of beta stability.

The s-process path in (N,Z) plane

Rolfs and Rodney 1988

144 145 146 60 Nd 1.5 ... \$ 7 Pr 136 p Се La $(\beta = \nu)$ 130 135 136 137 Ва 5.6 NUMBER OF PROTONS Z Cs 55 126 P 130 131 132 136 134 Xe ρ 130 120 124 125 126 128 Тe 5.7 1.1 Sb 122 124 117 118 119 120 50 Sn 5,7 5,7 1.1 In 106 112 Cd 107 Ag s-PROCESS Pd Rh 45 55 60 65 70 75 80 85

NUMBER OF NEUTRONS N

FIGURE 9.7. A section of the chart of nuclides and the s-process path through the elements in this mass region. Note that the path bypasses the p- and r-process nuclei. The r-process nuclei are the end products of an isobaric β -decay chain, the flow of which is indicated by the inclined arrows, from neutron-rich progenitors produced in an intense neutron flux. When this flux ceases, the progenitors "rain" down to the valley of stability via β -decay.

S-only, r-only and s r-nuclei

- A nucleus can be in general be synthesised by a combination of s- and r-processes (usually at different sites, stars etc).
- Some nuclei can be due only to s-process or r-process, since they are shielded by other nuclei from the alternate process' path. E.g. in the next figure, ¹³⁴Ba (s-only nucleus) is shielded from the r-process path by ¹³⁴Xe. Similarly, ^{134,136}Xe (r-nuclei) are shielded from s-process path.

s- and r-process paths near Xe-Cs-Ba-La

The r-process

The plot of the s-process path in the (N,Z) plane shows that certain Nuclei on the neutron rich side of the valley of stability will be missed by the s-process. A second mechanism for synthesizing heavy nuclei also proposed by Burbidge et al (1957) is the r-process in which:

• An equilibrium is maintained in $(n,\gamma) \Leftrightarrow (\gamma,n)$ reactions. Neutron capture Fills up the available bound levels in the nucleus until this equilibrium sets in.

• The nucleosynthesis path is along exotic neutron-rich nuclei that would Be highly unstable in the laboratory.

•The rate of nucleosynthesis is controlled by the beta-decay rate. Each beta-decay converting $n \rightarrow p$ opens up a hole in the Fermi sea allowing another neutron to be captured. The r-process abundance is : A(Z,N) α [ω_{β} (Z, N)]⁻¹

• The neutron capture is fast comapred to beta-decay rates.

Hydrogen mass fraction	X = 0.71	H.Schatz 2004
Helium mass fraction	Y = 0.28	
Metallicity (mass fraction of everything else)	Z = 0.019	
Heavy Elements (beyond Nickel) mass fraction	4E-6	

Element Abundance and neutron capture cross sections

The sites of the s-process

weak s-process: core He/ shell C burning in massive stars main s-process: He shell flashes in low mass TP-AGB stars 10⁵ $empirical ON_s$ values of approx. steady flow s-only isotopes, SIGMA x ABUNDANCE (mb,Si=10⁶) 10⁴ $Y\lambda \propto Y\sigma_{(n,\gamma)} \approx \text{const}$ corrections for r-and p-processes < 10% 10³ (Anders and Ebihara N, 1982) 10² can easily interpolate 10 s-contribution for s+r-nuclei if neutron capture cross sections are known

10⁻¹

56

75

100

125

MASS NUMBER

150

175

200

The weak s-process and its neutron source

In massive stars (e.g. 25 Msun) during core Helium burning and Shell C-burning, ¹⁴N is rapidly burnt to ²²Ne by successive alpha Captures and a beta+ decay.

He burning core contains ¹⁴N initially.

The product ²²Ne then acts as a neutron source in the reaction ${}^{22}Ne(\alpha, n){}^{25}Mg$ towards the end of Helium burning when Temperature is about 3 . 10⁸ K .

Iron group nuclei serve as seed nuclei for a secondary s-process

The main s-process

H. Schatz 2004

• number of He flashes in stars life: few – 100

period of flashes: 1000 – 100,000 years

Jan 16, 2006 SINP

(Lugaro et al. ApJ586(2003)1305) Adopted by H. Schatz

Neutron sources in s-process

Conditions during the main s-process

	¹³ C(α,n) in pocket	²² Ne(α ,n) in He flash
Temperature	0.9 x 10 ⁸ K	2.7 x 10 ⁸ K
Neutron density	7 x 10 ⁷ cm ⁻³	10 ¹⁰ cm ⁻³
Duration	20,000 yr	few years
Neutron exposure τ *)	0.1 / mb	0.01 / mb
		A

weaker but longer main contribution (90% of exposure) short, intense burst slight modification of abundances (branchings !)

s-process.....

The time dependence of abundance N_A of An s-only isotope of A is given by: $dN_A/dt = N_n(t) N_{A-1}(t) < \sigma v >_{A-1} - N_n(t) N_A(t) < \sigma v >_A - \lambda_{\beta}(t) N_A(t)$ The destructive terms in above equation can be combined into: N_A(t) ($\lambda_n + \lambda_{\beta}$).

When the beta-decay rate is much faster than the capture rate $\lambda_{\beta} >> \lambda_n$, the radioactive nuclei decay quickly to their adjacent isobars of higher Z and their own abundances can be completely neglected.

In the other extreme case when $\lambda_{\beta} << \lambda_{n}$, the radioactive nuclei are treated as stable nuclei. This is ok except in the s-process branching points.

More on s-process

 Stellar temperature is constant during s-process. Can therefore write:

 $\langle \sigma \mathbf{V} \rangle = \sigma_A \mathbf{V}_{T,}$ where the σ_A is the Maxwellian averaged neutron capture cross section and \mathbf{V}_T is thermal velocity. Then the equation:

 $dN_A/dt = v_T N_n(t) (\sigma_{A-1}N_{A-1} - \sigma_A N_A)$

The coupled terms are self-regulating. I.e., the effect is to minimize the difference between the terms on the R.H.S. and to reach an equilibrium state where the LHS = 0. In the mass region between neutron magic numbers, we there get:

Jan 16, 2006 SINP $\sigma_A N_A = \sigma_{A-1} N_{A-1} = constant$

Heavy elements in the solar system

The Fig. on the right from Pagel shows contribution of several processes to the Abundance of each element. In turn each process can be a mixture of several events.

The r-process

Temperature: ~1-2 GK Density: 300 g/cm3 (~60% neutrons !) neutron capture timescale: ~ 0.2 μ s

Jan 16, 2006 SINP

H. Schatz 2004

(n, γ) Equilibrium in r-process nucleosynthesis

As the neutron number density increases, the neutron binding energy Q_n decreases and rapid neutron addition stops when Q_n approaches zero energy. This happens when the (γ , n) photodisintegration rate balances out the neutron capture rate. The (n, γ) reaction is an exothermic reaction and the thermally averaged reaction has:

$$\langle \sigma v
angle_{(n,\gamma)} = \left(rac{2\pi}{\mu kT}
ight)^{3/2} rac{\Gamma_n \Gamma_\gamma}{\Gamma} e^{-E/KT}$$

Here $E \sim 0$ is the resonance energy.

(n,γ) reactions (continued)

$$\mathbf{r}_{(n,\gamma)} = N_n N_A \left(\frac{2\pi}{\mu kT}\right)^{3/2} \frac{\Gamma_{\gamma} \Gamma_n}{\Gamma}$$

Compare this with the reverse (γ, n) reaction rate with the photon number density in the high energy tail (2 slides later)

$$\approx \frac{1}{N_{\gamma}\pi^2} \varepsilon^2 e^{-\varepsilon/kT} d\varepsilon$$

with :
$$N_{\gamma} \approx \frac{\pi}{13} (kT)^3$$

(n, γ) equilibrium (contd.)

 Use resonant cross section in the (γ,n) direction with photon wavenumber proportional to the energy:

$$\sigma_{(\gamma,n)} = \frac{\pi}{\varepsilon^2} \frac{\Gamma_{\gamma} \Gamma_n}{(\varepsilon - E_r)^2 + (\Gamma/2)^2}$$

and with c = 1,
$$\langle \sigma \mathbf{v} \rangle = \frac{1}{\pi^2 N_{\gamma}} \int_0^\infty \varepsilon^2 e^{-\varepsilon/kT} d\varepsilon \frac{\pi}{\varepsilon^2} \frac{\Gamma_{\gamma} \Gamma_n}{(\varepsilon - E_r)^2 + (\Gamma/2)^2}$$

Here, $N_{\gamma} \sim \pi (kT)^3 / 13$ is the photon normalization factor. Jan 16, 2006 SINP

(n,γ) reaction (contd...)

For a sharp resonance, the integral over The numerator yields: $(2\pi/\Gamma)$. Thus,

$$\langle \sigma \mathbf{v} \rangle \approx \frac{\Gamma_n \Gamma_{\gamma}}{N_{\gamma}} e^{-(E_r/kT)} \frac{2}{\Gamma}$$

The (γ, n) rate is then:

$$\mathbf{r}_{(\gamma,n)} \approx 2N_{A+1} \frac{\Gamma_{\gamma}\Gamma_{n}}{\Gamma} e^{-E_{r}/kT}$$

Neutron density for (n,γ) equilibrium

Equate (n,γ) and (γ,n) rates with $N_{A} \sim N_{A+1}$

$$N_n \approx \frac{2}{(\hbar c)^3} \left(\frac{\mu c^2 kT}{2\pi}\right)^{3/2} e^{-E_r/kT}$$

The above neutron density requires the neutron Binding energy E_r and neutron reduced mass with a A~150 nuclear target.

R-process and neutron binding energy

With typical r-process conditions, T₉~1
 And N_n~ 3x10²³ cm⁻³, we get:

 $E_r \sim 2.4 \text{ MeV}$

The neutrons are thus bound by about 30 times the kT, a value that is still small compared to a typical binding energy of 8 MeV for a normal nucleus near the valley of beta stability.

What is the site of r-process?

(has been debated over many years and remains still tentative:)

 The r-process requires exceptionally explosive conditions: ρ ~ 10²⁰ cm⁻³, T ~ 0.1 MeV, t ~ 1 sec.

 Both primary (requiring no preexisting metals) and secondary sites (neutron capture on seeds) have been proposed and leads to different evolution with galactic metallicity.

Sites of r-process

 Primary sites include:

 neutronized atmosphere above proto neutron star in a Type II SN
 neutron rich jets from supernovae or neutron rich mergers

.

Sites of r-process

Secondary sites (where the ρ (n) can be lower):
1)He/C zones in Type II SNe
2) Red Giant Helium flash
3) ν-spallation neutrons in the Helium zones

.

R-process site

- Balance of evidence favours primary sites: (see W. Haxton, Chap 5)
- Ultra Metal Poor (UMP) stars ([Fe/H] ~ -1.7 to -3.1) in the galactic halo (Sneden et al 2003) show an r-process element distribution v. similar to Sun for Z > 55. It appears that in the early galaxy, all of the elements, even those like Ba that are now being formed in s-process, were in fact synthesised then in a unique process: the main r-process. But discrepancies below Ba (Z=56) between solar and UMP abundances suggest a weak r-process.
- Also the iron content is variable. These old stars must have then formed within ages short compared to galactic mixing times. Thus the r-process material in these stars must be from one or a few local SNe.

Scenario for r-process primary sites

R-process conditions realized in a type II SN

- As the material just above the proto-neutron star boundary is blown off, the very hot neutron rich material containing neutrons and protons cools and at first assembles to α particles in a freeze-out, locking up all the protons. Then triple alpha and (α, α, n) rexns bridge the A = 5, 8 gap and alpha captures continue tillheavy nuclei "seeds" of A ~ 80 - 100.
- The net result is a small number of heavy seed nuclei, and left over excess neutrons and alphas. The excess neutrons preferentially capture on the heavy seeds to go further producing r-process nuclei. The models of supernovae have the required conditions "almost happen". (The devil is in the details).

The role of neutrinos in r-process nucleosynthesis ?

- Recall r-process requires: (1-3) x 10⁹ K; Freeze-out radius is about 600-1000 km from the proto-neutron star in a SN; Lv ~ (0.015 –0.005)10 ⁵¹/(100km)²sec; τ ~ 3 sec.
- r-process material ejection occurs in an intense neutrino flux. Post-processing by neutrinos can alter the nuclear distribution after the r-process is completed.
- In the Neon-zone where Flourine production was due to 1/300 of the nuclei interacting with neutrinos, and since relevant neutrino-nucleus cross-section scale as A, the probability of an r-process nucleus interacting with the neutrino flux is approximately unity.
- This scenario can be altered if v oscillations (ve ⇔ vτ) lead to an anomalously hot ve spectrum via (ve + n → e + p) which converts the soup back towards the proton rich side.

Neutrino capture reactions

$$\begin{split} & v_e + n \rightarrow p + e^- \\ & \overline{v}_e + p \rightarrow n + e^+ \\ & v_e + (Z, A) \rightarrow (Z + 1, A) + e^- \\ & \overline{v}_e + (Z, A) \rightarrow (Z - 1, A) + e^+ \\ \end{split}$$
 On nuclei

Matrix elements

$$|M_{F}|^{2} = |\langle \psi_{f} | C_{V} \sum_{i=1}^{A} \tau(i) | \psi_{i} \rangle|^{2}$$
$$|M_{GT}|^{2} = |\langle \psi_{f} | C_{A} \sum_{i=1}^{A} \sigma(i) \tau(i) | \psi_{i} \rangle|^{2}$$

For very neutron rich nuclei the antineutrino capture direction is Pauli blocked. In these cases the antineutrino capture rate is negligible compared to the neutrino capture rates (there is no Fermi transition in the β + direction).

For the very neutron rich nuclei typical of the r-process, there will be several neutrons emitted after the neutrino induced excitation to the Gamow-Teller or Fermi resonances.

Jan 16, 2006 SINP

Meyer, McLaughlin & Fuller (1998)

Waiting point approximation

Definition: **ASSUME** (n,γ) - (γ,n) equilibrium within isotopic chain

Consequences

During (n,γ) - (γ,n) equilibrium abundances within an isotopic chain are given by Saha equilibrium:

$$\frac{Y(Z,A+1)}{Y(Z,A)} = n_n \frac{G(Z,A+1)}{2G(Z,A)} \left[\frac{A+1}{A} \frac{2\pi\hbar^2}{m_u kT}\right]^{3/2} \exp(S_n / kT)$$

time independent

- can treat whole chain as a single nucleus in network
- only slow beta decays need to be calculated dynamically
- neutron capture rate independent

(therefore: during most of the r-process n-capture rates do not matter !)

Jan 16, 2006 SINP

After Schatz 2004

A very old and ultra metal poor star

CS22892-052

is a red (K) giant star located in the Halo of the galaxy at a distance: 4.7 kpc and has a mass ~0.8 M_sol. It is very metal poor: [Fe/H]= -3.1, [Dy/Fe]= +1.7 Recall that:

[X/Y]=log(X/Y)-log(X/Y)_{solar}

Old stars formed before the Galaxy was well mixed. They preserve local pollution from individual nucleosynthesis events from the past

Jan 16, 2006 SINP

Sneden 2003

Double enhancement of r-process and s-process elements in Carbon-enhanced metal poor stars

- CEMP stars show large enhancement of s-process elements but with lowest [Ba/Eu] ratios (<0.4) disagree with predictions of low metallicity AGB stars and require an additional r-process contribution. Many CEMP stars are in binary systems.
- Such peculiar abundances suggest stellar models in which the double enhancements of s- and r-process elements happen from a 8-10 Msun companion in a wide binary (Wanajo et al 2006).
- The s-processing happens during an AGB phase followed by the r-processing during the subsequent supernova explosion of its inner O-Ne-Mg core, leading to CEMP-r/s stars.

References:

- W. Haxton, Lecture notes on Nuclear Astrophysics Chapter 5, Univ Washington: http://ewiserver.npl.washington.edu/phys554
- C. Rolfs and W. Rodney, "Cauldrons in the Cosmos"
- H. Reeves, "Stellar evolution and nucleosynthesis"
- H. Schatz, <u>www.nscl.msu.edu/~schatz/PHY983/Notes/rpocess2.pdf</u> (also sprocess.pdf)
- C. Sneden, Science 299, 70 (2003)
- B.S. Meyer, L. McLaughlin, G. Fuller, Phys Rev C 58, 3696, (1998)
- S. Wanajo, K. Nomoto, etal, ApJ 636, 842 (2006).