The Origin of the Elements between Iron and the Actinides – Probes for Red Giants and Supernovae

Outline of scenarios for neutron capture nucleosynthesis (Red Giants, Supernovae) and implications for laboratory studies

- Accelerator neutron sources, experimental techniques based on the time-of-flight method, state-of-the-art detectors, stellar beta decay rates
- Stellar spectra in the lab, activation method, status *s* process, *p*-and *r*-process studies

s-process branchings MACS and ß-rates for unstable isotopes

lab half-life of 93 yr reduced to $t_{1/2} = 3$ yr at s-process site

 fast decay of thermally populated excited states

probing neutron density, temperature, pressure, time scales !

detection of neutron capture events

prompt γ -rays + TOF-methodsingle γ 's* Moxon-Rae
* PH-weighting
* Ge $\epsilon_{\gamma} \sim 1\%$
~ 20%
~ 1%all cascade γ 's * 4π BaF2~100%

milestones in neutron capture studies

1960s	pulsed VdG,	$MR \And C_6D_6$	MCA,
	eLINACs	detectors	computers
1980s	spallation neutrons	4π BaF ₂ , activation	CAMAC, PC, MC
	LAMPF		simulations
2000	n_TOF, J-PARC FRANZ	AMS	fast digitizers

what determines quality of (n, γ) data?

- neutron source (energy range, flux, resolution)
- samples (available mass, purity, activity)
- detectors (resolution, efficiency, granularity)
- data acquisition (fast digitizers, off-line analyses)
- data analysis (simulations, R-matrix codes)
- methodology (TOF or activation)

comparison of pulsed neutron sources

Facility	Neutron flux at sample [cm ⁻² s ⁻¹ dec ⁻¹]	Repetitio n rate [Hz]	Flight path [m]	Pulse width [ns]	Neutron energy range [eV]
Karlsruhe	1 · 104	250K	0.8	0.7	10 ³ -2 · 10 ⁵
LANSCE at Los Alamos	5 · 10 ⁵	20	20	250	th -10 ⁵
n_TOF at CERN	5·10 ⁴	0.4	185	6	th -106
GELINA at Geel	5·10 ⁴	800	30	1	th -10 ⁶
ORELA at Oak Ridge	2 · 10 ⁴	525	40	8	th -10 ⁶

new facilities and upgrades					
Frankfurt	1 · 10 ⁷	250K	0.8	<1	10 ³ -2 · 10 ⁵
J-PARC	5 · 10 ⁶	25	15	100	th -10⁵
LANSCE upgrade	5·10 ⁶	20	20	250	th -10⁵
n_TOF at CERN	3 · 10 ⁶	0.4	185	6	th -106

state of the art γ-ray detectors

efficiency: important for measurements of small cross sections and to compensate for sample mass or weak neutron neutron flux

 segmentation: multi-detector arrays for higher efficiency, angular distributions, and background suppression, γ calorimeters (FZK, LANL, n_TOF)

sensitivity: improved background suppression (C₆D₆ detectors)

resolution: compromised by efficiency, high resolution HPGe detectors crucial for activation measurements

optimized C₆D₆ detectors

the Karlsruhe 4π BaF₂ array

 ε_{γ} >90% up to 10 MeV $\Delta E/E = 6\%$ at 6 MeV $\Delta t = 500 \text{ ps}$

ε_{case} > 98% clear signatures good TOF resolution

the Nd cross section measurements with the 4π BaF₂ detector: TOF

sample ladder ¹⁴²Nd 208Pb 143Nd 145Nd ¹⁹⁷Au ¹⁴⁶Nd ¹⁴⁸Nd **Empty** 144Nd

the Nd cross section measurements with the 4π BaF₂ detector: N(E γ)

stellar cross section of ^{142}Nd previous valuepresent result $47\pm7 \text{ mb}$ $35.0\pm0.7 \text{ mb}$

$\sigma(E_n)$ measured relative to ¹⁹⁷Au(n, γ)¹⁹⁸Au

folding with stellar neutron spectrum yields Maxwellian averaged cross section (MACS)

$$\langle \sigma \rangle = \frac{\langle \sigma V \rangle}{V_{T}} = \frac{2}{\sqrt{\pi}} \frac{\int \sigma(E_n) E_n \exp(-E_n/kT) dE_n}{\int E_n \exp(-E_n/kT) dE_n}$$

SEF: thermal population of nuclear states

$$P(E_k) = \frac{(2J_k + 1)e^{-E_k/kT}}{\sum_m (2J_m + 1)e^{-E_m/kT}}$$

in ¹⁸⁷Os at kT = 30 keV:

P(gs) = 33% P(1st) = **47%** P(all others) = 20%

stellar enhancement factor = SEF = stellar σ / lab. σ

stellar ¹⁸⁷Os(n, γ) cross section: theory

Hauser-Feshbach statistical model:

$$\sigma_{n,\gamma}(E_n) = \frac{\pi}{k_n^2} \sum_{J\pi} g_J \frac{\sum_{ls} T_{n,ls} T_{\gamma,J}}{\sum_{ls} T_{n,ls} + \sum_{ls} T_{n',ls} + T_{\gamma,J}} W_{\gamma,J}$$

• neutron transmission coefficients, T_n : from OMP calculations

• γ -ray transmission coefficients, T_{γ} : from GDR (experimental parameters)

• nuclear level densities: fixed at the neutron binding from $<\!D\!>_{exp}$

all these parameters can be derived and fixed from the analysis of experimental data at low-energy stellar correction factor $F_{\sigma} = SEF_{186} / SEF_{187}$

kT (keV)	⟨ O ₁₈₇ ⟩ ^{lab} (mbarn)	⟨ O ₁₈₇ ⟩ ^{calc} (mbarn)	< 0 ₁₈₇ >* (mbarn)	<i>SEF</i> ₁₈₇	F _σ
10	1988	2111	2324	1.10	0.91
20	1171	1193	1402	1.18	0.85
30	874	876	1059	1.21	0.86
40	715	712	877	1.23	0.89
50	614	610	766	1.26	0.93

the s process in AGB stars: the search for an abundance signature

freeze-out of final abundance patterns

large freeze-out effects in s-process branchings:

sensitive tests for stellar model with respect to

- neutron flux
- temperature
- density

¹⁴²Nd ± 5%
¹⁴⁸Sm factor ± 2
¹⁵²Gd factor ± 100

n_TOF - the CERN spallation neutron source

20 GeV protons on lead block

- 300 neutrons per proton
- most luminous n-source worldwide
- high resolution TOF facility

the n_TOF tunnel

Os(n, γ) cross sections measured at n_TOF/CERN

resolution & sensitivity

¹⁵¹Sm(n, γ)

more than 200 "new" resonances

important for obtaining level densities & strength functions for improved Hauser-Feshbach calculation

spallation sources for TOF measurements of stellar (n,γ) rates

LOS ALABORATORY ATIONAL LABORATORY LOS Alamos Neutron Science Center	PS n_TOF Co	213
+		+
0.8	proton energy (GeV)	24
20	repetition rate (Hz)	0.4
250	pulse width (ns)	5
20	flight path (m)	185
200	average proton current (µA)	2
20	neutrons per proton	760

the Frankfurt Neutron source at the SGZ

 $E_{p} = 1.9 - 2.4 \text{ MeV}, \quad \Delta t = 1 \text{ ns}$

TOF mode: 250 kHz, 2 mA Or CW mode: 175 MHz, 200 mA

data acquisition and analysis

 flash-ADC: for flexible and comprehensive off-line analysis (fast digitizers for recording full detector response, e.g. @ n_TOF over 16 ms with 500 MS/s)

 simulations: MCNP and GEANT are becoming standard tools for planning of experiments and – necessarily - for the analysis of cross section measurements with complex detector arrays

computer simulations

42 independent modules in total 60 I of BaF₂

sample requirements

unstable samples: now and soon

s process

branch point		future
status		
⁶³ Ni	•	•
⁷⁹ Se	•	
⁸¹ Kr	•	•
⁸⁵ Kr		
¹⁴⁷ Nd		•
¹⁴⁷ Pm	_	•
¹⁴⁸ Pm		
¹⁵¹ Sm		•
¹⁵⁴ Eu		ŏ
¹⁵⁵ Eu		•
¹⁵³ Gd	•	•
¹⁶⁰ Tb		
¹⁶³ Ho		•
¹⁷⁰ Tm		•
¹⁷¹ Tm		
¹⁷⁹ Ta		
185 W		
204 T 1		

r and p process

(n,γ) cross sections for a variety of unstable isotopes $(r: {}^{60}\text{Fe}, {}^{106}\text{Ru}, {}^{126}\text{Sn}, {}^{182}\text{Hf}...,$ + double neutron capture ! $(p: {}^{91,92}\text{Nb}, {}^{97,98}\text{Tc}...)$

for direct use in reaction networks
to derive rates of inverse reactions
to test and assist statistical models

stellar enhancement of ß-rates

B rates: - decay of thermally populated excited states - bound beta decay

EC: - ionization versus capture from continuum

ß-rates of unstable isotopes

decay of thermally populated excited states

- A>60: Takahashi and Yokoi (1987)
- experiments: 1 direct case (⁷⁹Se) and 1 indirect (¹⁷⁶Lu)

bound beta decay

 experimentally verified at GSI in 3 cases (¹⁶³Dy, ¹⁸⁷Re, ²⁰⁷TI)

stellar ß-rate of ⁷⁹Se

stellar

experimental

ß-decay of ⁷⁹Se^m

mini-orange spectrometer for suppression of conversion electrons

$$\frac{\lambda_{\gamma}}{\lambda_{\beta}} = 1780^{+560}_{-310}$$

$$\log ft = 4.70^{+0.10}_{-0.09}$$

bound ß-decay

summary of lecture II

- (n,γ) cross sections are crucial for abundances: s-process branchings and freeze-out phases
- existing experimental possibilities in some cases suited even for measurements on unstable isotopes, but branching points and *p*- and *r*process regions represent big challenge
- high flux at spallation sources: new possibilities for a variety of measurements on important unstable isotopes