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Introduction

W
hen the “father of sociology”, August Comte,

came up with the idea of a “social physics”, he

hoped that the puzzles of social systems could

be revealed with a natural science approach . However,

progress along these lines was very difficult and slow.

Today, most sociologists do not believe in his positivistic

approach anymore. The question is whether this proves the

failure of the positivistic approach or whether it just shows

that social scientists did not use the right methods so far.

After all, social scientists rarely have a background in the

natural sciences, while the positivistic approach has been

most successful in fields like physics, chemistry, or biology.

In fact, recently new scientific communities are

developing, and they are growing quickly. They call

themselves socio-physicists, mathematical sociologists,

computational social scientists, agent-based modelers,
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complexity or network scientists. Researchers from the

social sciences, physics, computer science, biology,

mathematics, and artificial intelligence research are

addressing the challenges of social and economic systems

with mathematical or computational models and lab or web

experiments. Will they end up with resignation in view of

the complexity of social and economic systems, or will they

manage to push our knowledge of social systems

considerably beyond what was imaginable even a decade

ago? Will August Comte’s vision of sociology as “the

queen of the sciences” finally become true?

My own judgement is that it is less hopeless to develop

mathematical models for social systems than most social

scientists usually think, but more difficult than most natural

scientists imagine. The crucial question is, how substantial

progress in a field as complicated and multi-faceted as the

social sciences can be made, and how the current obstacles

can be overcome? Moreover, what are these obstacles, after

all? The current contribution tries to make the controversial

issues better understandable to scientific communities with
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PLURALISTIC MODELING OF COMPLEX SYSTEMS
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The modeling of complex systems such as ecological or socio-economic systems can be very

challenging. Although various modeling approaches exist, they are generally not compatible and

mutually consistent, and empirical data often do not allow one to decide what model is the right one,

the best one, or most appropriate one. Moreover, as the recent financial and economic crisis shows,

relying on a single, idealized model can be very costly.

This contribution tries to shed new light on problems that arise when complex systems are modeled.

While the arguments can be transferred to many different systems, the related scientific challenges are

illustrated for social, economic, and traffic systems. The contribution discusses issues that are

sometimes overlooked and tries to overcome some frequent misunderstandings and controversies of

the past. At the same time, it is highlighted how some long-standing scientific puzzles may be solved

by considering non-linear models of heterogeneous agents with spatio-temporal interactions. As a

result of the analysis, it is concluded that a paradigm shift towards a pluralistic or possibilistic

modeling approach, which integrates multiple world views, is overdue. In this connection, it is argued

that it can be useful to combine many different approaches to obtain a good picture of reality, even

though they may be inconsistent. Finally, it is identified what would be profitable areas of

collaboration between the socio-economic, natural, and engineering sciences.
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different approaches and backgrounds. While each of the

points may be well-known to some scientists, they are

probably not so obvious for others. Putting it differently,

this contribution tries to build bridges between different

disciplines interested in similar subjects, and make thoughts

understandable to scientific communities with different

points of views.

A dialogue between social, natural and economic

sciences seems to be desirable not only for the sake of an

intellectual exchange on fundamental scientific problems. It

also appears that science is lacking behind the pace of

upcoming socio-economic problems, and that we need to

become more efficient in addressing practical problems .

President Lee C. Bollinger of New York’s prestigious

Columbia University formulated the challenge as follows:

“The forces affecting societies around the world ... are

powerful and novel. The spread of global market systems ...

are ... reshaping our world ..., raising profound questions.

These questions call for the kinds of analyses and

understandings that academic institutions are uniquely

capable of providing. Too many policy failures are

fundamentally failures of knowledge.”

The fundamental and practical scientific challenges

require from us that we do everything we can to find

solutions, and that we do not give up before the limits or

failure of a scientific approach have become obvious. As

will be argued in the Discussion and Outlook, different

methods should be seen complementary to each other and,

even when inconsistent, may allow one to get a better

picture than any single method can do, no matter how

powerful it may seem.

When speaking about socio-economic systems in the

following, it could be anything from families over social

groups or companies up to countries, markets, or the world

economy including the financial system and the labor

market. The constituting system elements or system

components would be individuals, groups, or companies,

for example, depending on the system under consideration

and the level of description one is interested in.

On the macroscopic (systemic) level, social and

economic systems have some features that seem to be

similar to properties of certain physical or biological

systems. One example is the hierarchical organization. In

social systems, individuals form groups, which establish

organizations, companies, parties, etc., which make up

states, and these build communities of states (like the

United States or the European Union, for example). In

physics, elementary particles form atoms, which create
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Particular Difficulties of Modeling Socio-

Economic Systems

molecules, which may form solid bodies, fluids or gases,

which together make up our planet, which belongs to a

solar system, and a galaxy. In biology, cells are composed

of organelles, they form tissues and organs, which are the

constituting parts of living creatures, and these make up

ecosystems.

Such analogies are certainly interesting and have been

discussed, for example, by Herbert Spencer and later on in

systems theory . It is not so obvious, however, how much

one can learn from them. While physical systems are often

well understood by mathematical models, biological and

socio-economic systems are usually not. This often inspires

physicists to transfer their models to biological and socio-

economic problems (see the discussion in the section “The

Model Captures Some Features...”), while biologists, social

scientists, and economists often find such attempts

“physicalistic” and inadequate. In fact, social and economic

systems possess a number of properties, which distinguish

them from most physical ones:

1. the number of variables involved is typically

(much) larger (considering that each human brain

contains about 1000 billion neurons),

2. the relevant variables and parameters are often

unknown and hard to measure (the existence of

“unknown unknowns” is typical),

3. the time scales on which the variables evolve are

often not well separated from each other,

4. the statistical variation of measurements is

considerable and masks laws of social behavior,

where they exist (if they exist at all),

5. frequently there is no ensemble of equivalent

systems, but just one realization (one human

history),

6. empirical studies are limited by technical,

financial, and ethical issues,

7. it is difficult or impossible to subdivide the system

into simple, non-interacting subsystems that can be

separately studied,

8. the observer participates in the system and

modifies social reality,

9. the non-linear and/or network dependence of many

variables leads to complex dynamics and

structures, and sometimes paradoxical effects,

10. interaction effects are often strong, and emergent

phenomena are ubiqui tous (hence , not

understandable by the measurement and

quantification of the individual system elements),

11. factors such as a large degree of randomness and

heterogeneity, memory, anticipation, decision-
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making, communication, consciousness, and the

re levance of in tent ions and individual

interpretations complicate the analysis and

modeling a lot,

12. the same applies to human features such as

emotions, creativity, and innovation,

13. the impact of information is often more decisive

for the behavior of a socio-economic system than

physical aspects (energy, matter) or our biological

heritage,

14. the “rules of the game” and the interactions in a

social or economic system may change over time,

in contrast to what we believe to be true for the

fundamental laws and forces of physics,

15. in particular, social systems are influenced by

normative and moral issues, which are variable.

For such reasons, social systems are the most complex

systems we know. They are certainly more complex than

physical systems are. As a consequence, a considerable

fraction of sociologists thinks that mathematical models for

social systems are destined to fail, while most economists

and many quantitatively oriented social scientists seem to

believe in models with many variables. Both is in sharp

contrast to the often simple models containing only a few

variables that physicists tend to propose. So, who is right?

The following discussion suggests that this is the wrong

question. We will therefore analyze why different scientists,

who apparently deal with the same research subject, come

to so dramatically different conclusions.

It is clear that this situation has some undesirable side

effects: Scientists belonging to different schools of thought

often do not talk to each other, do not learn from each other,

and probably reject each others’ papers and project

proposals more frequently. It is, therefore, important to

make the approach of each school understandable to the

others.

Many social scientists think

that the fifteen challenges listed above are so serious that it

is hopeless to come up with mathematical models for social

systems. A common view is that all models are wrong.

Thus, a widespread approach is to work out narratives, i.e.

to give a qualitative (non-mathematical and non-

algorithmic) description of reality that is as detailed as

possible. This may be compared with a naturalist painting.

Narratives are important, as they collect empirical

evidence and create knowledge that is essential for

modelers sooner or later. Good models require several steps

Modeling Approaches

Qualitative Descriptions :

of intellectual digestion, and the first and very essential one

is to create a picture of the system one is interested in and

to make sense of what is going on in it. This step is clearly

indispensible. Nevertheless, the approach is sometimes

criticized for reasons such as the following:

Observation, description, and interpretation are

difficult to separate from each other, since they are

typically performed by the same brain (of a single

scientist). Since these processes strongly involve

the observer, it is hard or even impossible to

provide an objective description of a system at this

level of detail. Therefore, different scientists may

analyze and interpret the system in different,

subjective ways. What is an important aspect for

one observer may be an irrelevant detail for

another one, or may even be overlooked. In

German, there is a saying that “one does not see the

forest amongst all the trees”, i.e. details may hide

the bigger picture or the underlying mechanisms.

In the natural sciences, this problem has been

partially overcome by splitting up observation,

description, and interpretation into separate

processes: measurements, statistical analysis, and

modeling attempts. Many of these steps are

supported by technical instruments, computers, and

software tools to reduce the individual element and

subjective influence. Obviously, this method can

not be easily transferred to the study of social

sys tems, as individuals and subjec t ive

interpretations have important impacts on the

overall system.

Despite its level of detail, a narrative is often not

suited to be translated into a computer program that

would reproduce the phenomena depicted by it.

When scientists try to do so, in many cases it turns

out that the descriptions are ambiguous, i.e. still not

detailed enough to come up with a unique

computer model. In other words, different

programmers would end up with different

computer models, producing different results.

Therefore, Joshua Epstein claims: “If you didn’t

grow it, you didn’t explain it” (where “grow”

stands here for “simulate in the computer”). For

example, if system elements interact in a non-linear

way, i.e. effects are not proportional to causes,

there are many different possibilities to specify the

non-linearity: is it a parabola, an exponential

dependence, a square root, a logarithm, a power

law, ...? Or when a system shows partially random

behavior, is it best described by additive or

multiplicative noise, internal or external noise? Is it

�

�
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chaotic or turbulent behavior, or are the system

elements just heterogeneous? It could even be a

combination of several options. What differences

would these various possibilities make?

In certain fields of computational

social science or economics, it is common to develop

computer models that grasp as many details as possible.

They would try to implement all the aspects of the system

under consideration, which are known to exist. In the ideal

case, these facts would be properties, which have been

repeatedly observed in several independent studies of the

kind of system under consideration, preferably in different

areas of the world. In some sense, they would correspond to

the overlapping part of many narratives. Thus, one could

assume that these properties would be characteristic

features of the kind of system under consideration, not just

properties of a single and potentially quite particular

system.

Despite it sounds logical to proceed in this way, there

are several criticisms of this approach:

In case of many variables, it is difficult to specify

their interdependencies in the right way. (Just

remember the many different possibilities to

specify non-linear interactions and randomness in

the system.)

Some models containing many variables may have

a large variety of different solutions, which may be

highly dependent on the initial or boundary

conditions, or the history of the system. This

particularly applies to models containing non-linear

interactions, which may have multiple stable

solutions or non-stationary ones (such as periodic

or non-periodic oscillations), or they may even

show chaotic behavior. Therefore, depending on

the parameter choice and the initial condition, such

a model could show virtually kind of behavior.

While one may think that such a model would be a

flexible world model, it would in fact be just a fit

model. Moreover, it would probably not be very

helpful to understand the mechanisms underlying

the behavior of the system. As John von Neumann

pointed out: “With four parameters I can fit an

elephant and with five I can make him wiggle his

trunk.” This wants to say that a model with many

parameters can fit anything and explains nothing.

This is certainly an extreme standpoint, but there is

some truth in it.

When many variables are considered, it is hard to

judge which ones are independent of each other

and which ones not. If variables are mutually

Detailed Models :

�

�

�
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dependent, one effect may easily be considered

twice in the model, which would lead to biased

results. Dependencies among variables may also

imply serious problems in the process of parameter

calibration. The problem is known, for example,

from sets of linear equations containing collinear

variables.

Models with many variables, particularly non-

linear ones, may be sensitive to the exact

specification of parameters, initial, or boundary

conditions, or to small random effects. Phenomena

like hysteresis (history-dependence) , phase

transitions or “catastrophes” , chaos , or noise-

induced transitions illustrate this clearly.

Parameters, initial and boundary conditions of

models with many variables are hard to calibrate If

small (or no) data sets are available, the model is

under-specified, and the remaining data must be

estimated based on “expert knowledge”, intuition

or rules of thumb, but due to the sensitivity

problem, the results may be quite misleading. The

simulation of many scenarios with varying

parameters can overcome the problem in part, as it

gives an idea of the possible variability of systemic

behaviors. However, the resulting variability can

be quite large. Moreover, a full exploration of the

parameter space is usually not possible when a

model contains many parameters, not even with

supercomputers.

In models with many variables, it is often difficult

to identify the mechanism underlying a certain

phenomenon or system behavior. The majority of

variables may be irrelevant for it. However, in

order to understand a phenomenon, it is essential to

identify the variables and interactions (i.e. the

interdependencies among them) that matter.

Simple models try to avoid (some of)

the problems of detailed models by restricting themselves

to a minimum number of variables needed to reproduce a

certain effect, phenomenon or system behavior. They are

aiming at a better understanding of so-called “stylized

facts”, i.e. simplified, abstracted, or “idealtypical”

observations (“the essence”). For example, while detailed

descriptions pay a lot of attention to the particular content

of social norms or opinions and how they change over time

in relation to the respective cultural setting, simple models

abstract from the content of social norms and opinions.

They try to formulate general rules of how social norms

come about or how opinions change, independently of their

�

�

�
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Simple Models :
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content, with the aim of understanding why these processes

are history-dependent (“hysteretic”) and in what way they

dependent on microscopic and macroscopic influences.

It is clear that simple models do not describe (and do

not even want to describe) all details of a system under

consideration, and for this reason they are also called

minimal or toy models sometimes. The approach may be

represented by a few quotes. The “KISS principle” for

building a model demands to “keep it simple and

straightforward” . This is also known as Occam’s (or

Ockham’s) razor, or as principle of parsimony. Albert

Einstein as well demanded : “Make everything as simple

as possible, but not simpler”.

A clear advantage of simple models is that they may

facilitate an analytical treatment and, thereby, a better

understanding. Moreover, it is easy to extend simple models

in a way that allows one to consider a heterogeneity among

the system components. This supports the consideration of

effects of individuality and the creation of simple

“ecological models” for socio-economic systems.

Nevertheless, as George Box puts it: “Essentially, all

models are wrong, but some are useful” .

The last quote touches an important point. The choice of

the model and its degree of detail should depend on the

purpose of a model, i.e. its range of application. For

example, there is a large variety of models used for the

modeling and simulation of freeway traffic. The most

prominent model classes are “microscopic” car-following

models, focussing on the interaction of single vehicles,

“mesoscopic” gas-kinetic models, describing the change of

the velocity distribution of vehicles in space and time,

“macroscopic” fluid-dynamic models, restricting

themselves to changes of the average speed and density of

vehicles, and cellular automata, which simplify microscopic

ones in favor of simulation speed. Each type of model has

certain ranges of application. Macroscopic and cellular

automata models, for example, are used for large-scale

traffic simulations to determine the traffic situation on

freeways and perform short-term forecasts, while

microscopic ones are used to study the interaction of

vehicles and to develop driver assistance systems. For some

of these models, it is also known how they are

mathematically connected with each other, i.e. macroscopic

ones can be derived from microscopic ones by certain kinds

of simplifications (approximations) .

The main purpose of models is to guide people’s

thoughts. Therefore, models may be compared with city

maps. It is clear that maps simplify facts, otherwise they

would be quite confusing. We do not want to see any single

detail (e.g. each tree) in them. Rather we expect a map to

show the facts we are interested in, and depending on the
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respective purpose, there are quite different maps (showing

streets, points of interest, topography, supply networks,

industrial production, mining of natural resources, etc.).

One common purpose of models is prediction, which is

mostly (mis)understood as “forecast”, while it often means

“the identification of implications regarding how a system

is expected to behave under certain conditions”. It is clear

that, in contrast to the motion of a planet around the sun,

the behavior of an individual can hardly be forecasted.

Nevertheless, there are certain tendencies or probabilities of

doing certain things, and we usually have our hypotheses of

what our friends, colleagues, or family members would do

in certain situations.

Moreover, it turns out that, when many people interact,

the aggregate behavior can sometimes be quite predictable.

For example, the “wisdom of crowds” is based on the

statistical law of large numbers , according to which

individual variations (here: the independent estimation of

facts) are averaged out.

Furthermore, interactions between many individuals

tend to restrict the degree of freedom regarding what each

individual can or will do. This is, why the concept of

“social norms” is so important. Another example is the

behavior of a driver, which is constrained by other

surrounding vehicles. Therefore, the dynamics of traffic

flows can be mathematically well understood .

Nevertheless, one cannot exactly forecast the moment in

which free traffic flow breaks down and congestion sets in,

and therefore, one cannot forecast travel times well. The

reason for this is the history-dependent dynamics, which

makes it dependent on random effects, namely on the size

of perturbations in the traffic flow. However, what can be

predicted is what are the possible traffic states and what are

conditions under which they can occur. One can also

identify the probability of traffic flows to break down under

certain flow conditions, and it is possible to estimate travel

times under free and congested flow conditions, given a

measurement of the inflows. The detail that cannot be

forecasted is the exact moment in which the regime shift

from free to congested traffic flow occurs, but this detail

has a dramatic influence on the system. It can determine

whether the travel time is 5 or 40 minutes.

However, it is important to underline that, in contrast to

what is frequently stated, the purpose of developing models

is not only prediction. Joshua Epstein, for example,

discusses 16 other reasons to build models, including

explanation, guiding data collection, revealing dynamical

analogies, discovering new questions, illuminating core

uncertainties, demonstrating tradeoffs, training

19

18,20

v

VOL. 76, NOS. 9–10 319



practitioners, and decision support, particularly in crises .

Of course, not everybody favors simple models, and

typical criticisms of them are:

It is usually easy to find empirical evidence, which

is not compatible with simple models (even though,

to be fair, one would have to consider the purpose

they have been created for, when judging them).

Therefore, one can say that simple models tend to

over-simplify things and leave out more or less

important facts. For this reason, they may be

considered inadequate to describe a system under

consideration.

Due to their simplicity, it may be dangerous to take

decisions based on their implications.

It may be difficult to decide, what are the few

relevant variables and parameters that a simple

model should consider. Scientists may even

disagree about the stylized facts to model.

Simple models tend to reproduce a few stylized

facts only and are often not able to consistently

reproduce a large number of observations. The

bigger picture and the systemic view may get lost.

Making simple models compatible with a long list

of stylized facts often requires to improve or extend

the models by additional terms or parameter

dependencies. Eventually, this improvement

process ends up with detailed models, leaving one

with the problems specified in the related section.

Certain properties and behaviors of socio-economic

systems may not be understandable with methods

that have been successful in physics: Subdividing

the system into subsystems, analyzing and

modeling these subsystems, and putting the models

together may not lead to a good description of the

overall system. For example, several effects may

act in parallel and have non-separable orders of

magnitude. This makes it difficult or impossible to

start with a zeroth or first order approximation and

to improve it by adding correction terms (as it is

done, for example, when the falling of a body is

described by the effect of gravitational acceleration

plus the effect of air resistance). Summing up the

mathematical terms that describe the different

effects may not converge. It is also not clear

whether complex systems can be always

understood via simple principles, as the success of

complexity science might suggest. Some complex

systems may require complex models to explain

them, and there may even be phenomena, the

complexity of which is irreducible. Turbulence

21
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could be such an example. While it is a long-

standing problem that has been addressed by many

bright people, it has still not been explained

completely.

It should be added, however, that we do not know today,

whether the last point is relevant, how relevant it is, and

where. So far, it is a potential problem one should be aware

of. It basically limits the realm, in which classical modeling

will be successful, but we have certainly not reached these

limits, yet.

Modeling socio-

economic systems is less hopeless than many social

scientists may think . In recent years, considerable

progress has been made in a variety of relevant fields,

including

experimental research ,

data mining ,

network science ,

agent-based modeling ,

the theory of complex systems (including emergent

and self-organized phenomena, or chaos) ,

the theory of phase transitions (“catastrophes” ),

critical phenomena , and extreme events , and

the engineering of intelligent systems .

These fields have considerably advanced our

understanding of complex systems. In this connection, one

should be aware that the term “complexity” is used in many

different ways. In the following, we will distinguish three

kinds of complexity:

1. structural,

2. dynamical, and

3. functional complexity.

One could also add algorithmic complexity, which is

given by the amount of computational time needed to solve

certain problems. Some optimization problems, such as the

optimization of logistic or traffic signal operations, are

algorithmically complex .

Linear models are not considered to be complex, no

matter how many terms they contain. An example for

complexity is a car or airplane. They are

constructed in a way that is dynamically more or less

deterministic and well controllable, i.e. dynamically simple,

and they also serve relatively simple functions (the motion

from a location A to another location B). While the

acceleration of a car or a periodic oscillation would be an

example for a simple dynamics, examples for complex

Modeling Complex Systems :
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dynamical behavior are non-periodic changes, deterministic

chaos, or history-dependent behaviors. Complex

can already be produced by simple sets of non-linearly

coupled equations. While a planet orbiting around the sun

follows a simple dynamics, the interaction of three celestial

bodies can already show a chaotic dynamics. Ecosystems,

the human body or the brain would be complex

systems. The same would hold for the world wide web,

financial markets, or running a country or multi-national

company.

While the interrelation between function, form and

dynamics still poses great scientific challenges, the

understanding of structurally or dynamically complex

systems has significantly progressed. Simple agent-based

models of systems with a large number of interacting

system elements (be it particles, cars, pedestrians,

individuals, or companies) show properties, which remind

of socio-economic systems. Assuming that these elements

mutually adapt to each other through non-linear or network

interactions (i.e. that the elements are influenced by their

environment while modifying it themselves), one can find a

rich, history-dependent system behavior, which is often

counter-intuitive, hardly predictable, and seemingly

uncontrollable. These models challenge our common way

of thinking and help to grasp behaviors of complex systems,

which are currently a nightmare for decision-makers.

For example, complex systems are often unresponsive to

control attempts, while close to “critical points” (also

known as “tipping points”), they may cause sudden (and

often unexpected) phase transition (so-called “regime

shifts”). These correspond to discontinuous changes in the

system behavior. The breakdown of free traffic flow would

be a harmless example, while a systemic crisis (such as a

financial collapse or revolution) would be a more dramatic

one. Such systemic crises are often based on cascade

spreading through network interactions . Hence, complex

adaptive systems allow one to understand extreme events as

a result of strong interactions in a system (rather than as

externally caused shocks). Furthermore, the interaction of

many system elements may give rise to interesting self-

organization phenomena and emergent properties, which

cannot be understood from the behaviors of the single

elements or by adding them up. Typical examples are

collective patterns of motion in pedestrian crowds or what

is sometimes called “swarm intelligence” .

Considering this, it is conceivable that many of today’s

puzzles in the social sciences may one day be explained by

simple models, namely as emergent phenomena resulting

from interactions of many individuals and/or other system

dynamics

functionally

37
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elements. It is important to note that emergent phenomena

cannot be explained by models (which are most

common in many areas of quantitative empirical research in

the social sciences and economics).

Unfortunately, there is no standard way to set up models

of emergent phenomena. On the one hand, there are many

possible kinds of non-linear functional dependencies

(“interactions”) (see the end of the section on “Qualitative

Descriptions”). On the other hand, model assumptions that

appear plausible do often not produce the desired or

expected effects.

In spite of these difficulties, taking into account time-

dependent change, a non-linear coupling of variables,

spatial or network interactions, randomness, and/or

correlations (i.e. features that many social and economic

models currently do not consider to the necessary extent),

can sometimes deliver unexpected solutions of long-

standing puzzles. For example, it turns out that

representative agent models (which are common in

economics) can be quite misleading, as the same kinds of

interactions among the system components can imply

completely different or even opposite conclusions, when

interactions take place in a socio-economic rather

than with average (or randomly chosen) interaction

partners . Therefore, models often produce counter-

intuitive results, when spatio-temporal or network

interactions are relevant. A simple non-linear model may

explain phenomena, which complicated linear models may

fail to reproduce. In fact, this generally applies to systems

that can show possible states (i.e. systems which do

not have just one stable equilibrium). Out-of-equilibrium

models are also required for the description of systemic

crises such as the current financial crisis .

Many people before and after Popper have been

thinking about the logic of scientific discovery . A wide-

spread opinion is that a good model should be applicable to

measurements of many systems of a certain kind, in

particular to measurements in different areas of the world.

The more observations a model can explain and the less

parameters it has, the more powerful it is usually

considered to be.

Models with a parameters can often be easier to

calibrate, and cause-and-effect relationships may be better

identified, but one can usually not expect that these models

would provide an exact description of reality. Nevertheless,

a good model should make predictions regarding some

possible, but previously unobserved system behaviors. In

this connnection, prediction does not necessarily mean the

linear

network
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few
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forecast of a certain event at a specific future point in time.

It means a specific system behavior that is expected to

occur (or to be possible) under certain conditions (e.g. for

certain parameter combinations or certain initial

conditions). When such conditions apply and the system

shows the expected behavior, this would be considered to

verify the model, while the model would be falsified or

seriously questioned, if the predicted system behavior

would not occur. By experimentally challenging models

based on their predictions (implications), it has been

possible in the natural sciences to rate alternative models

based on their quality in reproducing and predicting

measured data. Unfortunately, it turns out that this approach

is less suited to identify “the right model” of a social or

economic system under consideration. As we will discuss in

the following, this is not only due to the smaller amount of

data available on most aspects of social and economic

systems and due to experimental limitations for financial,

technical and ethical reasons.

So far, it is very expensive to carry out social

and economic experiments, for example in the laboratory.

While the study of human behavior under controlled

conditions has become a common research method not only

in psychology, but also in experimental economics and in

sociology, the number of individuals that can be studied in

such experiments is limited. This implies a large degree of

statistical variation, which makes it difficult to determine

behavioral laws or to distinguish between different models.

The statistical noise creates something like a foggy

situation, which makes it difficult to see what is going on.

In physics, this problem can be usually solved by better

measurement methods (apart from uncertainty that results

from the laws of quantum mechanics). In social systems,

however, there is an irreducible degree of randomness. The

behavior varies not only between individuals due to their

heterogeneity (different “personality”). It also varies from

one instance to another, i.e. the decision-making of an

individual is usually not deterministic. This could be due to

various reasons: unknown external influences (details

attracting the attention of the individual) or internal factors

(exploration behavior, memory effects, decisions taken by

mistake, etc.).

The large level of behavioral variability within and

between individuals is probably not only due to the

different histories individuals have, but also due to the fact

that exploration behavior and the heterogeneity of behaviors

are beneficial for the learning of individuals and for the

adaptibility of human groups to various environmental

conditions. Applying a theory of social evolution would,

therefore, suggest that randomness is significant in social

and economic systems, because it increases system

Promises and Difficulties of the Experimental

Approach :

performance. Besides, heterogeneity can also have

individual benefits, as differentiation facilitates

specialization. The benefit of a variation between

individuals is also well-known from ecological systems .

Besides impeding the discovery of behavioral laws, the

limited number of participants in laboratory experiments

also restricts the number of repetitions and the number of

experimental settings or parameter combinations that can be

studied. Scanning parameter spaces is impossible so far,

while it would be useful to detect different system

behaviors and to determine under which conditions they

occur. It can be quite tricky to select suitable system

parameters (e.g. the payoff matrix in a game-theoretical

experiment).

Computer simulations suggest that one would find

interesting results mainly, if the parameters selected in

different experimental setups imply different system

behaviors, i.e. if they belong to different “phases” in the

parameter space (see Fig. 1). To identify such parameter

combinations, it is advised to perform computer simulations

, in order to determine the phase diagram for the

system under consideration . The problem, however, is that

the underlying model is unlikely to be perfect, i.e. even a

good social or economic model is expected to make

predictions which are only approximately valid. As a

consequence, the effect one likes to show may appear for

(somewhat) different parameter values, or it may not occur

at all (considering the level of randomness) .

The above mentioned

properties of socio-economic systems imply that it is

difficult to select the “right” model among several

alternative ones. For an illustration, let us take car-

following models, which are used for the simulation of

urban or freeway traffic. Thanks to radar sensors, it has

become possible to measure the acceleration of vehicles as

a function of the typical variables of car-following models,

which are the distance to the car ahead, the own speed, and

the speed difference. When fitting the parameters of various

car-following models to data of such measurements, it turns

out that the remaining error between computer simulations

and measurements is about the same for most of the models.

The calibration error varies between 12 and 17 percent, and

according to the authors, “no model can be denoted to be

the best” . When the error of different models (i.e. the

deviation between model and data) is determined for a

data set (using the model parameters determined with the

previous data set), the resulting validation error usually

varies between 17 and 22 percent (larger validation errors

mainly result, when the calibration data set is overfitted) .

Again, the performance of the different models is so similar
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that it would not be well justified to select one of them as

the “correct” model and exclude all the others. A closer

analysis shows that the parameters of the car-following

dynamics vary among different drivers, but the behavior of

specific drivers also vary over time . We have to assume

that the same applies to basically all kinds of behavior, not

only for car driving. Moreover, it is likely that many

behaviors (such as decision-making behaviors) vary even

more than car-following behavior does. As a consequence,

it would be even more difficult to distinguish between

different models by means of

empirical or experimental data,

which would mean that we may

have to accept several models to be

(possibly) “right”, even when they

are not consistent with each other.

In other words, the question “What

is the best model?” or “How to

choose the model?” may not be

decidable in a reasonable way, as is

also suggested by the next section.

This situation reminds a bit of

Gödel’s Undecidability Theorem ,

w h i c h r e l a t e s t o t h e

(in)completeness of certain axiom

systems.

I t m a y b e t e m p t i n g t o

determine the best model as the

one which is most successful, for

example in terms of the number of

citations it gets. However, success

is not necessarily an indicator of a

good model. Let us take models

used for stock trading as an

example. Clearly, even if the stock

prices vary in a perfectly random

manner and if the average success

of each model is the same over an

infinite time

44
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period; when different

traders apply different trading

models, they will be differently

successful at any chosen point in

time. Therefore, one would

consider some models more

successful than others, while this

would be only a matter of luck. At

other points in time, different

models would be the most

successful ones.

Of course, if behaviors are not

just random, some models should be better than others, and

it should eventually be possible to separate “good” from

“bad” models through the “wisdom of crowds” effect.

However, the “wisdom of crowds” assumes independent

judgements, while scientists have repeated interactions. It

has been shown experimentally that this tends to create

consensus, but that this consensus will often deviate from

the truth . The problem results from social influence,

which creates a herding effect that can undermine the

“wisdom of crowds”. Of course, this mainly applies, when

46

Figure 1. So-called “phase diagram”, showing the finally remaining strategies in the spatial public goods

game with cooperators (C), defectors (D), cooperators who punish defectors (PC) and hypocritical

punishers (PD), who punish other defectors while defecting themselves . Initially, each of the four

strategies occupies 25% of the sites of the two-dimensional lattice, in which individuals interact, and

their distribution is uniform in space. However, due to their evolutionary competition, two or three

strategies die out after some time. The finally resulting state depends on the punishment cost, the

punishment fine, and the synergy r of cooperation (the factor by which cooperation increases the sum of

investments). The displayed phase diagrams are for (a) r = 2.0, (b) r = 3.5, and (c) r = 4.4. (d)

Enlargement of the small- cost area for r = 3.5. Solid separating lines indicate that the resulting fractions

of all strategies change continuously with a modification of the punishment cost and punishment fine,

while broken lines correspond to discontinuous changes. All diagrams show that cooperators and

defectors cannot stop the spreading of costly punishment, if only the fine-to-cost ratio is large enough

(see green PC area). Note that, in the absence of defectors, the spreading of punishing cooperators is

extremely slow and follows a voter model kind of dynamics. A small level of strategy mutations (which

continuously creates a small number of strategies of all kinds, in particular defectors) can largely

accelerate the spreading of them. Furthermore, there are parameter regions where punishing cooperators

can crowd out ”second-order free-riders” (non-punishing cooperators) in the presence of defectors

(D+PC). Finally, for low punishment costs, but moderate punishment fines, it may happen that

”moralists”, who cooperate and punish non-cooperative behavior, can only survive through an ”unholy

alliance” with ”immoral”, hypocritical punishers (PD+PC). For related videos, see

http://www.soms.ethz.ch/research/secondorder-freeriders or http://www.matjazperc.com/games/

moral.html.
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the facts are not sufficiently obvious, which however is the

case in the social sciences due to the high variability of

observations, while the problem is less pressing in the

natural sciences thanks to the higher measurement

precision. Nevertheless, the physicist Max Planck is known

for the quote: “Science progresses funeral by funeral” .

Kuhn’s study of scientific revolutions suggests as well

that scientific progress is not continuous, but there are

sudden paradigm shifts. This reveals the problem of herding

effects. Even a collective agreement is no guarantee for the

correctness of a model, as the replacement of classical

mechanics by relativistic quantum theory shows. In other

words, success is no necessarily an indicator for good

models. It may just be an indicator for what model is most

fashionable at a given time. The problem becomes worse by

the academic selection process that decides, what scientists

make a carreer and which ones not. It creates a considerable

inertia in the adjustment to new knowledge, i.e. scientific

trends are likely to persist longer than what is justified by

facts.

A typical approach in the

natural sciences is to verify or falsify previously untested

predictions (implications) of alternative models by

sometimes quite sophisticated experiments. Only in the

minority of cases, two alternative theories turn out to be the

same, like the wave and the particle picture of quantum

mechanics. In most cases, however, two theories A and B

are non-identical and inconsistent, which means that they

should make different predictions in particular kinds of

situations. Experiments are performed to find out whether

theory A or theory B is right, or whether both of them

deviate from the measurements. If the experimental data

confirm theory A and are not compatible with theory B (i.e.

deviate significantly from it), one would discard theory B

forever. In this way, experiments are thought to narrow

down the number of alternative theories, until a single

theory remains, which is considered to be “true”.

When social or economic systems are modeled, the

following situation is not unlikely to happen: Scientists

identify mutually incompatible predictions of theories A

and B, and it turns out that an experiment supports theory

A, but not theory B. One day, another scientist identifies a

different set of incompatible predictions, and another

experiment supports theory B, but not theory A. Due to the

inherent simplifications of socio-economic models, for any

model it should be easy to find empirical evidence that

contradicts it. What should one do in such cases? Giving up

on modeling would probably not be the best idea.

Generalizing a model is always possible, but it will usually

end up with detailed models, which implies a number of

47
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No Known Model is Right :

problems that have been outlined in the related section. One

could also stay with many particular models and determine

their respective ranges of validity. This, however, will never

result in a holistic or systemic model. A possible way out

would be the approach of pluralistic modeling outlined in

the Summary and Outlook.

Modeling in modern physics seems to face similar

problems. While one would expect that each experiment

narrows down the number of remaining, non-falsified

models, one actually observes that, after each experiment,

scientists come up with a number of new models. As people

say: ”Each answered question raises ten new ones.” In fact,

there is an abundance of elementary particle models, and

the same applies to cosmological models. Many models

require to assume the existence of factors that have never

been measured and perhaps will never be measured, such as

Higgs bosons, dark matter, or dark energy. We will probably

have to live with the fact that models are just models that

never grasp all details of reality.

Moreover, as has been pointed out, understanding

elementary particles and fundamental forces in physics does

not explain at all what is happening in the world around

us . Many emergent phenomena that we observe in the

biological, economic and social world will never be derived

from elementary particle physics, because emergent

properties of a system cannot be understood from the

properties of its system components alone. They usually

come about by the interaction of a large number of system

components. Let us be honest: Our textbooks do not even

explain the particular properties of water, as simple as H O

molecules may be. (Of course, this does not mean that this

situation will remain forever – see e.g. H. Eugene Stanley’s

related work.)

Generally, there is still a serious lack in understanding

the connection between function, dynamics, and form.

Emergence often seems to have an element of surprise. The

medical effect of a new chemical drug cannot be understood

by computer simulation alone. So far, we also do not

understand emotions and consciousness, and we cannot

calculate the biological fitness of a species in the computer.

The most exciting open puzzles in science concern such

emergent phenomena. It would be interesting to study,

whether social and economic phenomena such as trust,

solidarity, and economic value can be understood as

emergent phenomena as well .

Scientists are often prompted to transfer their

methods to another areas of application, based on analogies

that they see between the behavior of different systems.

Systems science is based on such analogies, and physicists

generalize their methods as well. The question is how

49,50
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useful a “physicalist approach” can be, which transfers

properties of many-particle systems to social or economic

systems, although individuals are certainly more intelligent

than particles and have many more behavioral degrees of

freedom.

Of course, physicists would never claim that particle

models could provide an exact description of social or

economic systems. Why, then, do they think the models

could make a contribution to the understanding of these

systems? This is, because they have experience with what

can happen in systems characterized by the non-linear

interaction of many system components in space and time,

and when randomness plays a role. They know how self-

organized collective phenomena on the “macroscopic”

(aggregate) level can results from interactions on the

“microscopic” (individual) level. And they have learned,

how this can lead to phase transitions (also called “regime

shifts” or “catastrophes”), when a system parameter

(“control parameter”) crosses a critical point (“tipping

point”). Furthermore, they have discovered that, at a critical

point, the system typically shows a scale-free behavior (i.e.

power laws or other fat-tail distributions rather than

Gaussian distributions).

It is important to note that the characteristic features of

the system at the critical point tend to be “universal”, i.e.

they largely do not depend on the details of the interactions.

This is, why physicists think they can abstract from the

details. Of course, details are expected to be relevant when

the system is close to a critical point. It should also be

added, that there are a number of different kinds of

universal behavior, so-called universality classes.

Nevertheless, many-particle models may allow one to get a

better understanding of regime shifts, which are not so well

understood by most established models in economics or the

social sciences. However, if the tipping point is far away,

the usefulness of many-particle models is limited, and more

detailed descriptions, as they are favored by economists and

social scientists, appear to be more adequate.

Sometimes, it is not so clear how far analogies can

carry, or whether they are useful at all. Let us take neural

network models. In a certain sense, they can be used to

model learning, generalization, and abstraction. However,

the hope that they would explain the functioning of the

brain has been largely disappointed. Today, we know that

the brain works quite differently, but neural network theory

has given birth to many interesting engineering applications

that are even commerically applied.

Let us consider models of cooperation based on coupled

oscillators as a second example. Without any doubt, the

synchronization of cyclical behavior is among the most

interesting collective phenomena we know of, and models

not

allow one to study if and how groups of oscillators will

coordinate each other or fall apart into subgroups (which

are not synchronized among each other, while the

oscillators in each of them are) . Despite this analogy to

group formation and group dynamics, it is not clear, what

we can learn from such models for social systems.

A similar point is sometimes raised for spin models,

which have been proposed to describe opinion formation

processes or the emergence of cooperation in social

dilemma situations. In this connection, it has been

underlined that social interactions cannot always be broken

down into binary interactions. Some interactions involve

three or more individuals at the same time, which may

change the character of the interaction. Nevertheless,

similar phenomena have been studied by overlaying binary

interactions, and it is not fully clear how important the

difference is.

Let us finally ask whether unrealistic assumptions are

generally a sign of bad models? The discussion in the

section on “Simple Models” suggests that this is not

necessarily so. It seems more a matter of the purpose of a

model, which determines the level of simplification, and a

matter of the availability of better models, i.e. a matter of

competition. Note, however, that a more realistic model is

not necessarily more useful. For example, many car-

following models are more realistic than fluid-dynamic

traffic models, but they are not suited to simulate large-

scale traffic networks in real-time. For social systems, there

are a number of different modeling approaches as well,

including the following:

Socio- and

econo-physicists often abstract social interactions

so much that their models come down to multi-

particle models (or even spin models with two

behavioral options). Such models focus on the

effect of non-linear interactions and are a special

case of bounded rationality models, sometimes

called zero-intelligence models . Nevertheless,

they may display features of collective or swarm

intelligence . Furthermore, they may be suited to

describe regime shifts or situations of routine

choice , i.e. situations where individuals react to

their environment in a more or less subconscious

and automatic way. Paul Omerod, an economist by

background, argues as follows : “In many social

and economic contexts, self-awareness of agents is

of little consequence... No matter how advanced

the cognitive abilities of agents in abstract

intellectual terms, it is as if they operate with

relatively low cognitive ability within the system...

The more useful ‘null model’ in social science
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agent modelling is one close to zero intelligence. It

is only when this fails that more advanced

cognition of agents should be considered.”

Most economists

seem to have quite the opposite approach. Their

concept of “homo economicus” (the “perfect

egoist”) assumes that individuals take strategic

decisions, choosing the optimal of their behavioral

options. This requires individuals with infinite

memory and processing capacities. Insofar, one

could speak of an infinite-intelligence approach. It

is also known as rational choice approach and has

the advantage that the expected behaviors of

individuals can be axiomatically derived. In this

way, it was possible to build the voluminous and

impressive theory of mainstream economics.

Again, the reliability of this theory depends, of

course, on the realism of its underlying

assumptions.

Certain schools

of sociologists use rational choice models as well.

In contrast to economists, however, they do not

generally assume that individuals would radically

optimize their own profit. Their models rather

consider that, in social systems, exchange is more

differentiated and multi-faceted. For example,

when choosing their behavior, individuals may not

only consider their own preferences, but the

preferences of their interaction partner(s) as well.

In recent years, “fairness theory” has received a

particular attention and often been contrasted

with rational choice theory. These social aspects of

decision-making are now eventually entering

economic thinking as well .

Psychologists

are perhaps least axiomatic and usually oriented at

empirical observations. They have identified

behavioral paradoxies, which are inconsistent with

rational choice theory, at least its classical variant.

For example, it turns out that most people behave

in a risk-averse way. To account for their

observations, new concepts have been developed,

including prospect theory , satisficing theory ,

and the concept of behavioral heuristics . In

particular, it turns out that individual decisions

depend on the respective . In his Nobel

economics lecture, Daniel Kahneman put it this

way: “Rational models are psychologically

unrealistic... the central characteristic of agents is

not that they reason poorly, but that they often act

intuitively. And the behavior of these agents is not
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Psychological modeling approach:
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guided by what they are able to compute, but by

what they happen to see at a given moment.”

Therefore, modern research directions relate to the

cognitive and neurosciences. These results are now

finding their way into economics via the fields of

experimental, behavioral, and neuro-economics.

In summary, there is currently no unified approach that

scientists generally agree on. Some of the approaches are

more stylized or axiomatic. Others are in better quantitative

agreement with empirical or experimental evidence, but

mathematically less elaborated. Therefore, they are

theoretically less suited to derive implications for the

behavior in situations, which have not been studied so far.

Consequently, all models have their strengths and

weaknesses, no matter how realistic they may be.

Moreover, none of the mathematical models available so far

seems to be sophisticated enough to reflect the full

complexity of social interactions between many people.

A

further difficulty of modeling socio-economic systems is

that scientists may not agree on the interpretation of a

model. Let us discuss, for example, the multi-nomial logit

model, which has been used to model decision-making in a

large variety of contexts and awarded with the Nobel

prize . This model can be derived in a utility-maximizing

framework, assuming perfectly rational agents deciding

under conditions of uncertainty. The very same model,

however, can also be derived in other ways. For example, it

can be linked to psychological laws or to distributions of

statistical physics . In the first case, the interpretation is

compatible with the infinite-intelligence approach, while in

the last case, it is compatible with the zero-intelligence

approach, which is quite puzzling. A comparison of these

approaches is provided by Ref. .

Summarizing the previous

discussion, it is quite unlikely that we will ever have a

single, consistent, complete, and correct model of socio-

economic systems. Maybe we will not even find such a

grand unified theory in physics. Recently, doubts along

these lines have even been raised by some particle

physicists . It may be the time to say good bye to a

modeling approach that believes in the feasibility of a

unique, general, integrated and consistent model. At least

there is no theoretical or empirical evidence for the

possibility of it.

This calls for a paradigm shift in the modeling

approach. It is important to be honest that each model is

Different Interpretations of the Same Model :

Pluralistic or Possibilistic Modeling and Multiple

World Views: The Way Out? :
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limited, but most models are useful for something. In other

words, we should be tolerant with regard to each others’

models and see where they can complement each other.

This does not mean that there would be separate models for

non-overlapping parts of the system, one for each

subsystem. As has been pointed out, it is hard to decide

whether a particular model is valid, no matter how small the

subsystem is chosen. It makes more sense to assume that

each model has a certain validity or usefulness, which may

be measured on a scale between 0 and 1, and that the

validity furthermore depends on the part or aspect of the

system addressed. This validity may be quantified, for

example, by the goodness of fit of a given system or the

accuracy of description of another system of the same kind.

As there are often models for each part or aspect

of a system, one could consider all of them and give each

one a weight according to their respective validity, as

determined statistically by comparison with empirical or

experimental data. Analogously to the “wisdom of

crowds” , which is based on the law of large numbers, this

should lead to a better quantitative fit or prediction than

most (or even each) model in separation, despite the likely

inconsistency among the models. Such an approach could

be called a modeling approach , as it tolerates

and integrates multiple world views. It may also be called a

approach , because it takes into account that

each model has only a certain likelihood to be valid, i.e.

each model describes a possible truth. However, this should

not be misunderstood as an appeal for a subjectivistic

approach. The pluralistic modeling approach still assumes

that there is some underlying reality that some, many, or all

of us share (depending on the aspect one is talking about).

As shocking as it may be for many scientists and

decision-makers to abandon their belief in the existence of a

unique, true model, solution, or policy, the pluralistic

modeling approach is already being used. Hurricane

prediction and climate modeling are such examples . Even

modern airplanes are controlled by multiple computer

programs that are run in parallel. If they do not agree with

each other, a majority decision is taken and implemented.

Although this may seem pretty scary, this approach has

apparently worked surprisingly well so far. Moreover, when

crash tests of newly developed cars are simulated in the

computer, the simulations are again performed with

models, each of which is based on different approximation

methods. Therefore, it is plausible to assume that pluralistic

modeling will be much more widely used in future,

whenever a complex system shall be modeled.
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Where Social Scientists and Natural Scientists or

Engineers Can Learn From Each Other : It has been

argued that all modeling approaches have their strengths

and weaknesses, and that they should be considered

complementary to each other rather than being each others’

enemies. This also implies that scientists of different

disciplines may profit and learn from each other. Areas of

fruitful multi-disciplinary collaboration could be:

the modeling of socio-economic systems

themselves,

understanding the impacts that engineered systems

have on the socio-economic world,

the modeling of the social mechanisms that drive

the evolution and spreading of innovations, norms,

technologies, products etc.,

scientific challenges related to the questions how to

manage complexity or to design better systems,

the application of social coordination and

cooperation mechanisms to the creation of self-

organizing technical systems (such as decentralized

traffic controls or peer-to-peer systems),

the development of techno-social systems , in

which the use of technology is combined with

social competence and human knowledge (such as

Wikipedia, prediction markets, recommender

systems, or the semantic web).

Given the large potentials of such collaborations, it is

time to overcome disciplinary boundaries. They seem to

make less and less sense. It rather appears that multi-

disciplinary, large-scale efforts are needed to describe and

understand socio-economic systems well enough and to

address practical challenges of humanity (such as the

financial and economic crisis) more successfully .
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